Many instruments and/or regressors: a friendly guide
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F19%3A00517859" target="_blank" >RIV/67985998:_____/19:00517859 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11640/19:00504906
Výsledek na webu
<a href="https://doi.org/10.1111/joes.12295" target="_blank" >https://doi.org/10.1111/joes.12295</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/joes.12295" target="_blank" >10.1111/joes.12295</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Many instruments and/or regressors: a friendly guide
Popis výsledku v původním jazyce
This paper surveys the state of the art in the econometrics of regression models with many instruments or many regressors based on alternative – namely, dimension – asymptotics. We list critical results of dimension asymptotics that lead to better approximations of properties of familiar and alternative estimators and tests when the instruments and/or regressors are numerous. Then, we consider the problem of estimation and inference in the basic linear instrumental variables regression setup with many strong instruments. We describe the failures of conventional estimation and inference, as well as alternative tools that restore consistency and validity. We then add various other features to the basic model such as heteroskedasticity, instrument weakness, etc., in each case providing a review of the existing tools for proper estimation and inference. Subsequently, we consider a related but different problem of estimation and testing in a linear mean regression with many regressors. We also describe various extensions and connections to other settings, such as panel data models, spatial models, time series models, and so on. Finally, we provide practical guidance regarding which tools are most suitable to use in various situations when many instruments and/or regressors turn out to be an issue.
Název v anglickém jazyce
Many instruments and/or regressors: a friendly guide
Popis výsledku anglicky
This paper surveys the state of the art in the econometrics of regression models with many instruments or many regressors based on alternative – namely, dimension – asymptotics. We list critical results of dimension asymptotics that lead to better approximations of properties of familiar and alternative estimators and tests when the instruments and/or regressors are numerous. Then, we consider the problem of estimation and inference in the basic linear instrumental variables regression setup with many strong instruments. We describe the failures of conventional estimation and inference, as well as alternative tools that restore consistency and validity. We then add various other features to the basic model such as heteroskedasticity, instrument weakness, etc., in each case providing a review of the existing tools for proper estimation and inference. Subsequently, we consider a related but different problem of estimation and testing in a linear mean regression with many regressors. We also describe various extensions and connections to other settings, such as panel data models, spatial models, time series models, and so on. Finally, we provide practical guidance regarding which tools are most suitable to use in various situations when many instruments and/or regressors turn out to be an issue.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-26535S" target="_blank" >GA17-26535S: Ekonometrie s dimenzionální asymptotikou</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Economic Surveys
ISSN
0950-0804
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
38
Strana od-do
689-726
Kód UT WoS článku
000460656200013
EID výsledku v databázi Scopus
2-s2.0-85056467488