Physical, mechanical, and biological properties of electrophoretically deposited lithium-doped calcium phosphates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F18%3A00491339" target="_blank" >RIV/68081723:_____/18:00491339 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/18:PU125910
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ceramint.2017.11.035" target="_blank" >http://dx.doi.org/10.1016/j.ceramint.2017.11.035</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ceramint.2017.11.035" target="_blank" >10.1016/j.ceramint.2017.11.035</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Physical, mechanical, and biological properties of electrophoretically deposited lithium-doped calcium phosphates
Popis výsledku v původním jazyce
In the present work, the preparation of sintered lithium-doped tricalcium phosphates was studied, along with their physical, mechanical, and biological properties. Calcium phosphates were shaped via the use of electrophoretic deposition (EPD), using colloidally milled dispersions of hydroxyapatite (HAp) particles. The dispersions were stabilised with monochloroacetic acid. Lithium was incorporated into the structure via an addition of lithium chloride, which also served to optimise the deposition process. The dispersions were milled colloidally for periods of 0-48 h. The colloidal milling resulted in two effects: i) disintegration of the commercial HAp powder (10 mu m) agglomerates, ii) unimodal distribution of the HAp particles ( similar to 170 nm). The fine particles of the milled HAp dispersions accelerated the deposition rate, and increased the mass of the deposit. The reduced size of the initial particles, owed to the milling, led to the superior arrangement of the particles during deposition and to reduced porosity after sintering (1050-1250 degrees C). The HAp decomposed into tricalcium phosphate phases during sintering. At a sintering temperature of 1250 degrees C, grain growth occurred, which consequently resulted in a slight degradation of the mechanical properties (reduction in hardness and Young's modulus). In contrast, the hardness and Young's modulus increased as the dispersion milling time increased (smaller grain size after sintering), however, the fracture toughness did not change. The results of the biological testing confirmed the bioactivity of the material through the growth of the apatite layer in the simulated body fluid (SBF), and the biodegradation of the prepared materials in the Tris-HCI solution. With regard to the preparation of compact lithium-doped tricalcium phosphates, the best results were obtained in the case of the sample that utilised the dispersion that was milled for 48 h, and was sintered at 1050 degrees C.
Název v anglickém jazyce
Physical, mechanical, and biological properties of electrophoretically deposited lithium-doped calcium phosphates
Popis výsledku anglicky
In the present work, the preparation of sintered lithium-doped tricalcium phosphates was studied, along with their physical, mechanical, and biological properties. Calcium phosphates were shaped via the use of electrophoretic deposition (EPD), using colloidally milled dispersions of hydroxyapatite (HAp) particles. The dispersions were stabilised with monochloroacetic acid. Lithium was incorporated into the structure via an addition of lithium chloride, which also served to optimise the deposition process. The dispersions were milled colloidally for periods of 0-48 h. The colloidal milling resulted in two effects: i) disintegration of the commercial HAp powder (10 mu m) agglomerates, ii) unimodal distribution of the HAp particles ( similar to 170 nm). The fine particles of the milled HAp dispersions accelerated the deposition rate, and increased the mass of the deposit. The reduced size of the initial particles, owed to the milling, led to the superior arrangement of the particles during deposition and to reduced porosity after sintering (1050-1250 degrees C). The HAp decomposed into tricalcium phosphate phases during sintering. At a sintering temperature of 1250 degrees C, grain growth occurred, which consequently resulted in a slight degradation of the mechanical properties (reduction in hardness and Young's modulus). In contrast, the hardness and Young's modulus increased as the dispersion milling time increased (smaller grain size after sintering), however, the fracture toughness did not change. The results of the biological testing confirmed the bioactivity of the material through the growth of the apatite layer in the simulated body fluid (SBF), and the biodegradation of the prepared materials in the Tris-HCI solution. With regard to the preparation of compact lithium-doped tricalcium phosphates, the best results were obtained in the case of the sample that utilised the dispersion that was milled for 48 h, and was sintered at 1050 degrees C.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/LD14072" target="_blank" >LD14072: Funkčně a strukturně gradientní biokompozity a skafoldy na bázi Ca-fosfátů pro kostní tkáňové inženýrství</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ceramics International
ISSN
0272-8842
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
2884-2891
Kód UT WoS článku
000423891900034
EID výsledku v databázi Scopus
2-s2.0-85033781770