On the nucleation of planar faults during low temperature and high stress creep of single crystal Ni-base superalloys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F18%3A00497067" target="_blank" >RIV/68081723:_____/18:00497067 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.actamat.2017.09.063" target="_blank" >http://dx.doi.org/10.1016/j.actamat.2017.09.063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2017.09.063" target="_blank" >10.1016/j.actamat.2017.09.063</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the nucleation of planar faults during low temperature and high stress creep of single crystal Ni-base superalloys
Popis výsledku v původním jazyce
The present work studies the nucleation of planar faults in the early stages of low temperature (750 °C) and high stress (800 MPa) creep of a Ni-base single crystal superalloy (SX). Two families of 60° dislocations with different Burgers vectors were detected in the transmission electron microscope (TEM). These can react and form a planar fault in the γ′ phase. A 2D discrete dislocation model helps to rationalize a sequence of events which lead to the nucleation of a planar fault. First, one 60° channel dislocation approaches another 60° interface dislocation with a different Burgers vector. At a distance of 5 nm, it splits up into two Shockley partials. The interface dislocation is pushed into the γ′-phase where it creates a small antiphase boundary. It can only move on when the leading Shockley partial joins it and creates an overall 1/3<112> superdislocation. This process is fast and therefore is difficult to observe. The results obtained in the present work contribute to a better understanding of the processes which govern the early stages of low temperature and high stress primary creep of SX.
Název v anglickém jazyce
On the nucleation of planar faults during low temperature and high stress creep of single crystal Ni-base superalloys
Popis výsledku anglicky
The present work studies the nucleation of planar faults in the early stages of low temperature (750 °C) and high stress (800 MPa) creep of a Ni-base single crystal superalloy (SX). Two families of 60° dislocations with different Burgers vectors were detected in the transmission electron microscope (TEM). These can react and form a planar fault in the γ′ phase. A 2D discrete dislocation model helps to rationalize a sequence of events which lead to the nucleation of a planar fault. First, one 60° channel dislocation approaches another 60° interface dislocation with a different Burgers vector. At a distance of 5 nm, it splits up into two Shockley partials. The interface dislocation is pushed into the γ′-phase where it creates a small antiphase boundary. It can only move on when the leading Shockley partial joins it and creates an overall 1/3<112> superdislocation. This process is fast and therefore is difficult to observe. The results obtained in the present work contribute to a better understanding of the processes which govern the early stages of low temperature and high stress primary creep of SX.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-22834S" target="_blank" >GA14-22834S: Fázová stabilita a plasticita slitin se střední až vysokou entropií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Materialia
ISSN
1359-6454
e-ISSN
—
Svazek periodika
144
Číslo periodika v rámci svazku
FEB
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
642-655
Kód UT WoS článku
000424067100058
EID výsledku v databázi Scopus
2-s2.0-85034442469