Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning of crystalline defects from TEM images: a solution for the problem of 'never enough training data'

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00581983" target="_blank" >RIV/68081723:_____/24:00581983 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/2632-2153/ad1a4e" target="_blank" >https://iopscience.iop.org/article/10.1088/2632-2153/ad1a4e</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/2632-2153/ad1a4e" target="_blank" >10.1088/2632-2153/ad1a4e</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning of crystalline defects from TEM images: a solution for the problem of 'never enough training data'

  • Popis výsledku v původním jazyce

    Crystalline defects, such as line-like dislocations, play an important role for the performance and reliability of many metallic devices. Their interaction and evolution still poses a multitude of open questions to materials science and materials physics. In-situ transmission electron microscopy (TEM) experiments can provide important insights into how dislocations behave and move. The analysis of individual video frames from such experiments can provide useful insights but is limited by the capabilities of automated identification, digitization, and quantitative extraction of the dislocations as curved objects. The vast amount of data also makes manual annotation very time consuming, thereby limiting the use of deep learning (DL)-based, automated image analysis and segmentation of the dislocation microstructure. In this work, a parametric model for generating synthetic training data for segmentation of dislocations is developed. Even though domain scientists might dismiss synthetic images as artificial, our findings show that they can result in superior performance. Additionally, we propose an enhanced DL method optimized for segmenting overlapping or intersecting dislocation lines. Upon testing this framework on four distinct real datasets, we find that a model trained only on synthetic training data can also yield high-quality results on real images-even more so if the model is further fine-tuned on a few real images. Our approach demonstrates the potential of synthetic data in overcoming the limitations of manual annotation of TEM image data of dislocation microstructure, paving the way for more efficient and accurate analysis of dislocation microstructures. Last but not least, segmenting such thin, curvilinear structures is a task that is ubiquitous in many fields, which makes our method a potential candidate for other applications as well.

  • Název v anglickém jazyce

    Deep learning of crystalline defects from TEM images: a solution for the problem of 'never enough training data'

  • Popis výsledku anglicky

    Crystalline defects, such as line-like dislocations, play an important role for the performance and reliability of many metallic devices. Their interaction and evolution still poses a multitude of open questions to materials science and materials physics. In-situ transmission electron microscopy (TEM) experiments can provide important insights into how dislocations behave and move. The analysis of individual video frames from such experiments can provide useful insights but is limited by the capabilities of automated identification, digitization, and quantitative extraction of the dislocations as curved objects. The vast amount of data also makes manual annotation very time consuming, thereby limiting the use of deep learning (DL)-based, automated image analysis and segmentation of the dislocation microstructure. In this work, a parametric model for generating synthetic training data for segmentation of dislocations is developed. Even though domain scientists might dismiss synthetic images as artificial, our findings show that they can result in superior performance. Additionally, we propose an enhanced DL method optimized for segmenting overlapping or intersecting dislocation lines. Upon testing this framework on four distinct real datasets, we find that a model trained only on synthetic training data can also yield high-quality results on real images-even more so if the model is further fine-tuned on a few real images. Our approach demonstrates the potential of synthetic data in overcoming the limitations of manual annotation of TEM image data of dislocation microstructure, paving the way for more efficient and accurate analysis of dislocation microstructures. Last but not least, segmenting such thin, curvilinear structures is a task that is ubiquitous in many fields, which makes our method a potential candidate for other applications as well.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Machine Learning-Science and Technology

  • ISSN

    2632-2153

  • e-ISSN

    2632-2153

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    22

  • Strana od-do

    015006

  • Kód UT WoS článku

    001142818000001

  • EID výsledku v databázi Scopus

    2-s2.0-85182737745