Wavelength-Dependent Optical Force Aggregation of Gold Nanorods for SERS in a Microfluidic Chip
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F19%3A00508049" target="_blank" >RIV/68081731:_____/19:00508049 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.8b12493" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.8b12493</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.8b12493" target="_blank" >10.1021/acs.jpcc.8b12493</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wavelength-Dependent Optical Force Aggregation of Gold Nanorods for SERS in a Microfluidic Chip
Popis výsledku v původním jazyce
Optical printing of metal-nanoparticle-protein complexes in microfluidic chips is of particular interest in view of the potential applications in biomolecular sensing by surface-enhanced Raman spectroscopy (SERS). SERS-active aggregates are formed when the radiation pressure pushes the particle-protein complexes on an inert surface, enabling the ultrasensitive detection of proteins down to pM concentration in short times. However, the role of plasmonic resonances in the aggregation process is still not fully clear. Here, we study the aggregation velocity as a function of excitation wavelength and power. We use a model system consisting of complexes formed of gold nanorods featuring two distinct localized plasmon resonances bound with bovine serum albumin. We show that the aggregation speed is remarkably accelerated by 300 or 30% with respect to the off-resonant case if the nanorods are excited at the long-axis or minor-axis resonance, respectively. Power-dependent experiments evidence a threshold below which no aggregation occurs, followed by a regime with a linear increase in the aggregation speed. At powers exceeding 10 mW, we observe turbulence, bubbling, and a remarkable 1 order of magnitude increase in the aggregation speed. Results in the linear regime are interpreted in terms of a plasmon-enhanced optical force that scales as the extinction cross section and determines the sticking probability of the nanorods. Thermoplasmonic effects are invoked to describe the results at the highest power. Finally, we introduce a method for the fabrication of functional SERS substrates on demand in a microfluidic platform that can serve as the detection part in microfluidic bioassays or lab-on-a-chip devices.
Název v anglickém jazyce
Wavelength-Dependent Optical Force Aggregation of Gold Nanorods for SERS in a Microfluidic Chip
Popis výsledku anglicky
Optical printing of metal-nanoparticle-protein complexes in microfluidic chips is of particular interest in view of the potential applications in biomolecular sensing by surface-enhanced Raman spectroscopy (SERS). SERS-active aggregates are formed when the radiation pressure pushes the particle-protein complexes on an inert surface, enabling the ultrasensitive detection of proteins down to pM concentration in short times. However, the role of plasmonic resonances in the aggregation process is still not fully clear. Here, we study the aggregation velocity as a function of excitation wavelength and power. We use a model system consisting of complexes formed of gold nanorods featuring two distinct localized plasmon resonances bound with bovine serum albumin. We show that the aggregation speed is remarkably accelerated by 300 or 30% with respect to the off-resonant case if the nanorods are excited at the long-axis or minor-axis resonance, respectively. Power-dependent experiments evidence a threshold below which no aggregation occurs, followed by a regime with a linear increase in the aggregation speed. At powers exceeding 10 mW, we observe turbulence, bubbling, and a remarkable 1 order of magnitude increase in the aggregation speed. Results in the linear regime are interpreted in terms of a plasmon-enhanced optical force that scales as the extinction cross section and determines the sticking probability of the nanorods. Thermoplasmonic effects are invoked to describe the results at the highest power. Finally, we introduce a method for the fabrication of functional SERS substrates on demand in a microfluidic platform that can serve as the detection part in microfluidic bioassays or lab-on-a-chip devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1212" target="_blank" >LO1212: ALISI - Centrum pokročilých diagnostických metod a technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
5608-5615
Kód UT WoS článku
000460996000051
EID výsledku v databázi Scopus
2-s2.0-85062456147