Analytical formulae for trajectory displacement in electron beam and generalized slice method.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F20%3A00534937" target="_blank" >RIV/68081731:_____/20:00534937 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0304399120302011" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0304399120302011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ultramic.2020.113050" target="_blank" >10.1016/j.ultramic.2020.113050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical formulae for trajectory displacement in electron beam and generalized slice method.
Popis výsledku v původním jazyce
Trajectory displacement due to statistical Coulomb interactions can play a major role in determining the per-formance of a charged particle beam system. Accurate estimation of the trajectory displacement is thus an important part of the design procedure of such an optical system. Traditionally, there are three approaches to determine the trajectory displacement: Monte Carlo simulation, the slice method, where trajectory displacementnis integrated along the beam length and finally a full analytical formula describing transparently the dependence of the trajectory displacement on the parameters of the system. The latter two were developed thoroughly by Jansen and Jiang. We revise Jansen’s slice method and the derivation of the integral formulae in Holtzmark and pencil-beam regimes. We show the integral formula fails to give accurate results in case a transition between the regimes occurs and we derive a new analytical expression unifying the Holtzmark and pencil-beam regime into a single formula. Furthermore, we generalize the slice method for arbitrary beam trajectory, hugely increasing its accuracy for non-ideal systems.
Název v anglickém jazyce
Analytical formulae for trajectory displacement in electron beam and generalized slice method.
Popis výsledku anglicky
Trajectory displacement due to statistical Coulomb interactions can play a major role in determining the per-formance of a charged particle beam system. Accurate estimation of the trajectory displacement is thus an important part of the design procedure of such an optical system. Traditionally, there are three approaches to determine the trajectory displacement: Monte Carlo simulation, the slice method, where trajectory displacementnis integrated along the beam length and finally a full analytical formula describing transparently the dependence of the trajectory displacement on the parameters of the system. The latter two were developed thoroughly by Jansen and Jiang. We revise Jansen’s slice method and the derivation of the integral formulae in Holtzmark and pencil-beam regimes. We show the integral formula fails to give accurate results in case a transition between the regimes occurs and we derive a new analytical expression unifying the Holtzmark and pencil-beam regime into a single formula. Furthermore, we generalize the slice method for arbitrary beam trajectory, hugely increasing its accuracy for non-ideal systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ultramicroscopy
ISSN
0304-3991
e-ISSN
—
Svazek periodika
217
Číslo periodika v rámci svazku
OCT
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
113050
Kód UT WoS článku
000588011200002
EID výsledku v databázi Scopus
2-s2.0-85087419771