Utilization of Residual CNN-GRU With Attention Mechanism for Classification of 12-lead ECG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F20%3A00543689" target="_blank" >RIV/68081731:_____/20:00543689 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9344152" target="_blank" >https://ieeexplore.ieee.org/document/9344152</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2020.032" target="_blank" >10.22489/CinC.2020.032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Utilization of Residual CNN-GRU With Attention Mechanism for Classification of 12-lead ECG
Popis výsledku v původním jazyce
Cardiac diseases are the most common cause of death. The fully automated classification of the electrocardiogram (ECG) supports early capturing of heart disorders, and, consequently, may help to get treatment early. Here in this paper, we introduce a deep neural network for human ECG classification into 24 independent groups, for example, atrial fibrillation, 1st degree AV block, Bundle branch blocks, premature contractions, changes in the ST segment, normal sinus rhythm, and others. The network architecture utilizes a convolutional neural network with residual blocks, bidirectional Gated Recurrent Units, and an attention mechanism. The algorithm was trained and validated on the public dataset proposed by the PhysioNet Challenge 2020. The trained algorithm was tested using a hidden test set during the official phase of the challenge and obtained the challenge validation score of 0.659 as entries by the ISIBrno team. The final testing scores were 0.847, 0.195,0.006, and 0.122, for testing sets I, II, III, and full test set, respectively. We have obtained 30th place out of 41 teams in the official ranking.
Název v anglickém jazyce
Utilization of Residual CNN-GRU With Attention Mechanism for Classification of 12-lead ECG
Popis výsledku anglicky
Cardiac diseases are the most common cause of death. The fully automated classification of the electrocardiogram (ECG) supports early capturing of heart disorders, and, consequently, may help to get treatment early. Here in this paper, we introduce a deep neural network for human ECG classification into 24 independent groups, for example, atrial fibrillation, 1st degree AV block, Bundle branch blocks, premature contractions, changes in the ST segment, normal sinus rhythm, and others. The network architecture utilizes a convolutional neural network with residual blocks, bidirectional Gated Recurrent Units, and an attention mechanism. The algorithm was trained and validated on the public dataset proposed by the PhysioNet Challenge 2020. The trained algorithm was tested using a hidden test set during the official phase of the challenge and obtained the challenge validation score of 0.659 as entries by the ISIBrno team. The final testing scores were 0.847, 0.195,0.006, and 0.122, for testing sets I, II, III, and full test set, respectively. We have obtained 30th place out of 41 teams in the official ranking.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/FW01010305" target="_blank" >FW01010305: Umělá inteligence pro autonomní klasifikaci EKG v rámci online telemedicínské platformy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 Computing in Cardiology (CinC 2020)
ISBN
978-1-7281-7382-5
ISSN
2325-8861
e-ISSN
—
Počet stran výsledku
4
Strana od-do
"Č. 47 (2020)"
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Rimini
Datum konání akce
13. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000657257000053