ECG Abnormalities Recognition Using Convolutional Network With Global Skip Connections and Custom Loss Function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137393" target="_blank" >RIV/00216305:26220/20:PU137393 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9344393" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9344393</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2020.189" target="_blank" >10.22489/CinC.2020.189</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ECG Abnormalities Recognition Using Convolutional Network With Global Skip Connections and Custom Loss Function
Popis výsledku v původním jazyce
The latest trends in clinical care and telemedicine suggest a demand for a reliable automated electrocardiogram (ECG) signal classification methods. In this paper, we present customized deep learning model for ECG classification as a part of the Physionet/CinC Challenge 2020. The method is based on modified ResNet type convolutional neural network and is capable to automatically recognize 24 cardiac abnormalities using 12-lead ECG. We have adopted several preprocessing and learning techniques including custom tailored loss function, dedicated classification layer and Bayesian threshold optimization which have major positive impact on the model performance. At the official phase of the Challenge, our team BUT-Team - reached a challenge validation score of 0.696, and the full test score of 0.202, placing us 21 out of 40 in the official ranking. This implies that our method performed well on data from the same source (reached first place with validation score), however, it has very poor generalization to data from different sources.
Název v anglickém jazyce
ECG Abnormalities Recognition Using Convolutional Network With Global Skip Connections and Custom Loss Function
Popis výsledku anglicky
The latest trends in clinical care and telemedicine suggest a demand for a reliable automated electrocardiogram (ECG) signal classification methods. In this paper, we present customized deep learning model for ECG classification as a part of the Physionet/CinC Challenge 2020. The method is based on modified ResNet type convolutional neural network and is capable to automatically recognize 24 cardiac abnormalities using 12-lead ECG. We have adopted several preprocessing and learning techniques including custom tailored loss function, dedicated classification layer and Bayesian threshold optimization which have major positive impact on the model performance. At the official phase of the Challenge, our team BUT-Team - reached a challenge validation score of 0.696, and the full test score of 0.202, placing us 21 out of 40 in the official ranking. This implies that our method performed well on data from the same source (reached first place with validation score), however, it has very poor generalization to data from different sources.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30201 - Cardiac and Cardiovascular systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computing in Cardiology 2020
ISBN
978-1-7281-7382-5
ISSN
2325-8861
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Rimini
Datum konání akce
13. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000657257000244