Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classification of ECG using ensemble of residual CNNs with or without attention mechanism

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00557480" target="_blank" >RIV/68081731:_____/22:00557480 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6579/ac647c" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6579/ac647c</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6579/ac647c" target="_blank" >10.1088/1361-6579/ac647c</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classification of ECG using ensemble of residual CNNs with or without attention mechanism

  • Popis výsledku v původním jazyce

    Objective. This paper introduces a winning solution (team ISIBrno-AIMT) to the official round of PhysioNet Challenge 2021. The main goal of the challenge was a classification of ECG recordings into 26 multi-label pathological classes with a variable number of leads (e.g. 12, 6, 4, 3, 2). The main objective of this study is to verify whether the multi-head-attention mechanism influences the model performance. Approach. We introduced an ECG classification method based on the ResNet architecture with a multi-head attention mechanism for the official round of the challenge. However, empirical findings collected during model development suggested that the multi-head attention layer might not significantly impact the final classification performance. For this reason, during the follow-up round, we removed a multi-head attention layer to test the influence on model performance. Like the official round, the model is optimized using a mixture of loss functions, i.e. binary cross-entropy, custom challenge score loss function, and custom sparsity loss function. Probability thresholds for each classification class are estimated using the evolutionary optimization method. The final architecture consists of three submodels forming a majority voting classification ensemble. Main results. The modified model without the multi-head attention layer increased the overall challenge score to 0.59 compared to the 0.58 from the official round. Significance. Our findings from the follow-up submission support the fact that the multi-head attention layer in the proposed architecture does not significantly affect the classification performance.

  • Název v anglickém jazyce

    Classification of ECG using ensemble of residual CNNs with or without attention mechanism

  • Popis výsledku anglicky

    Objective. This paper introduces a winning solution (team ISIBrno-AIMT) to the official round of PhysioNet Challenge 2021. The main goal of the challenge was a classification of ECG recordings into 26 multi-label pathological classes with a variable number of leads (e.g. 12, 6, 4, 3, 2). The main objective of this study is to verify whether the multi-head-attention mechanism influences the model performance. Approach. We introduced an ECG classification method based on the ResNet architecture with a multi-head attention mechanism for the official round of the challenge. However, empirical findings collected during model development suggested that the multi-head attention layer might not significantly impact the final classification performance. For this reason, during the follow-up round, we removed a multi-head attention layer to test the influence on model performance. Like the official round, the model is optimized using a mixture of loss functions, i.e. binary cross-entropy, custom challenge score loss function, and custom sparsity loss function. Probability thresholds for each classification class are estimated using the evolutionary optimization method. The final architecture consists of three submodels forming a majority voting classification ensemble. Main results. The modified model without the multi-head attention layer increased the overall challenge score to 0.59 compared to the 0.58 from the official round. Significance. Our findings from the follow-up submission support the fact that the multi-head attention layer in the proposed architecture does not significantly affect the classification performance.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW01010305" target="_blank" >FW01010305: Umělá inteligence pro autonomní klasifikaci EKG v rámci online telemedicínské platformy</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physiological Measurement

  • ISSN

    0967-3334

  • e-ISSN

    1361-6579

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    044001

  • Kód UT WoS článku

    000790542900001

  • EID výsledku v databázi Scopus

    2-s2.0-85129997154