Reducing misclassification of mild cognitive impairment based on base rate information from the uniform data set
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081740%3A_____%2F23%3A00551231" target="_blank" >RIV/68081740:_____/23:00551231 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00159816:_____/23:00079778 RIV/47122099:_____/23:N0000003 RIV/00216208:11210/23:10436490 RIV/00216208:11130/23:10436490 a 4 dalších
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/13825585.2021.2022593?src=" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/13825585.2021.2022593?src=</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/13825585.2021.2022593" target="_blank" >10.1080/13825585.2021.2022593</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reducing misclassification of mild cognitive impairment based on base rate information from the uniform data set
Popis výsledku v původním jazyce
The current study aimed to define and validate the criteria for characterizing possible and probable cognitive deficits based on the psychometric approach using the Uniform data set Czech version (UDS-CZ 2.0) to reduce the rate of misdiagnosis. We computed the prevalence of low scores on the 14 subtests of UDS-CZ 2.0 in a normative sample of healthy older adults and validated criteria for possible and probable cognitive impairment on the sample of amnestic Mild Cognitive Impairment (MCI) patients. The misclassification rate of the validation sample using psychometrically derived criteria remained low: for classification as possible impairment, we found 66–76% correct classification in the clinical sample and only 2–8% false positives in the healthy control validation sample, similar results were obtained for probable cognitive impairment. Our findings offer a psychometric approach and a computational tool to minimize the misdiagnosis of mild cognitive impairment compared to traditional criteria for MCI.
Název v anglickém jazyce
Reducing misclassification of mild cognitive impairment based on base rate information from the uniform data set
Popis výsledku anglicky
The current study aimed to define and validate the criteria for characterizing possible and probable cognitive deficits based on the psychometric approach using the Uniform data set Czech version (UDS-CZ 2.0) to reduce the rate of misdiagnosis. We computed the prevalence of low scores on the 14 subtests of UDS-CZ 2.0 in a normative sample of healthy older adults and validated criteria for possible and probable cognitive impairment on the sample of amnestic Mild Cognitive Impairment (MCI) patients. The misclassification rate of the validation sample using psychometrically derived criteria remained low: for classification as possible impairment, we found 66–76% correct classification in the clinical sample and only 2–8% false positives in the healthy control validation sample, similar results were obtained for probable cognitive impairment. Our findings offer a psychometric approach and a computational tool to minimize the misdiagnosis of mild cognitive impairment compared to traditional criteria for MCI.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50101 - Psychology (including human - machine relations)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1605" target="_blank" >LQ1605: Translační medicína</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aging Neuropsychology and Cognition
ISSN
1382-5585
e-ISSN
1744-4128
Svazek periodika
30
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
301-320
Kód UT WoS článku
000741252700001
EID výsledku v databázi Scopus
2-s2.0-85122737524