Subdifferential-based implicit return-mapping operators in Mohr-Coulomb plasticity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F17%3A00482472" target="_blank" >RIV/68145535:_____/17:00482472 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10237709
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1002/zamm.201600215/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/zamm.201600215/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201600215" target="_blank" >10.1002/zamm.201600215</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Subdifferential-based implicit return-mapping operators in Mohr-Coulomb plasticity
Popis výsledku v původním jazyce
The paper is devoted to constitutive solution, limit load analysis and Newton-like methods in elastoplastic problems containing the Mohr-Coulomb yield criterion. Within the constitutive problem, we introduce a self-contained derivation of the implicit return-mapping solution scheme using a recent subdifferential-based treatment. Unlike conventional techniques based on Koiter's rules, the presented scheme a priori detects a position of the unknown stress tensor on the yield surface even if the constitutive solution cannot be found in a closed form. This eliminates blind guesswork from the scheme and enables to analyze properties of the constitutive operator. It also simplifies the construction of the consistent tangent operator, which is important for the semismooth Newton method when applied to the incremental boundary-value elastoplastic problem. The incremental problem in Mohr-Coulomb plasticity is combined with limit load analysis. Beside a conventional direct method of incremental limit analysis, a recent indirect one is introduced and its advantages are described. The paper contains 2D and 3D numerical experiments on slope stability with publicly available Matlab implementations.
Název v anglickém jazyce
Subdifferential-based implicit return-mapping operators in Mohr-Coulomb plasticity
Popis výsledku anglicky
The paper is devoted to constitutive solution, limit load analysis and Newton-like methods in elastoplastic problems containing the Mohr-Coulomb yield criterion. Within the constitutive problem, we introduce a self-contained derivation of the implicit return-mapping solution scheme using a recent subdifferential-based treatment. Unlike conventional techniques based on Koiter's rules, the presented scheme a priori detects a position of the unknown stress tensor on the yield surface even if the constitutive solution cannot be found in a closed form. This eliminates blind guesswork from the scheme and enables to analyze properties of the constitutive operator. It also simplifies the construction of the consistent tangent operator, which is important for the semismooth Newton method when applied to the incremental boundary-value elastoplastic problem. The incremental problem in Mohr-Coulomb plasticity is combined with limit load analysis. Beside a conventional direct method of incremental limit analysis, a recent indirect one is introduced and its advantages are described. The paper contains 2D and 3D numerical experiments on slope stability with publicly available Matlab implementations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
22
Strana od-do
1502-1523
Kód UT WoS článku
000416847100001
EID výsledku v databázi Scopus
2-s2.0-85022017905