A robust structured preconditioner for the time-harmonic parabolic optimal control problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F18%3A00495413" target="_blank" >RIV/68145535:_____/18:00495413 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2Fs11075-017-0451-5.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs11075-017-0451-5.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-017-0451-5" target="_blank" >10.1007/s11075-017-0451-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A robust structured preconditioner for the time-harmonic parabolic optimal control problem
Popis výsledku v původním jazyce
We consider the iterative solution of optimal control problems constrained by the time-harmonic parabolic equations. Due to the time-harmonic property of the control equations, a suitable discretization of the corresponding optimality systems leads to a large complex linear system with special two-by-two block matrix of saddle point form. For this algebraic system, an efficient preconditioner is constructed, which results in a fast Krylov subspace solver, that is robust with respect to the mesh size, frequency, and regularization parameters. Furthermore, the implementation is straightforward and the computational complexity is of optimal order, linear in the number of degrees of freedom. We show that the eigenvalue distribution of the corresponding preconditioned matrix leads to a condition number bounded above by 2. Numerical experiments confirming the theoretical derivations are presented, including comparisons with some other existing preconditioners.
Název v anglickém jazyce
A robust structured preconditioner for the time-harmonic parabolic optimal control problem
Popis výsledku anglicky
We consider the iterative solution of optimal control problems constrained by the time-harmonic parabolic equations. Due to the time-harmonic property of the control equations, a suitable discretization of the corresponding optimality systems leads to a large complex linear system with special two-by-two block matrix of saddle point form. For this algebraic system, an efficient preconditioner is constructed, which results in a fast Krylov subspace solver, that is robust with respect to the mesh size, frequency, and regularization parameters. Furthermore, the implementation is straightforward and the computational complexity is of optimal order, linear in the number of degrees of freedom. We show that the eigenvalue distribution of the corresponding preconditioned matrix leads to a condition number bounded above by 2. Numerical experiments confirming the theoretical derivations are presented, including comparisons with some other existing preconditioners.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
79
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
575-596
Kód UT WoS článku
000445494100011
EID výsledku v databázi Scopus
2-s2.0-85037662259