Parallel Solution Methods and Preconditioners for Evolution Equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F18%3A00495421" target="_blank" >RIV/68145535:_____/18:00495421 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mla.vgtu.lt/index.php/MMA/article/view/1424/1134" target="_blank" >https://www.mla.vgtu.lt/index.php/MMA/article/view/1424/1134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3846/mma.2018.018" target="_blank" >10.3846/mma.2018.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel Solution Methods and Preconditioners for Evolution Equations
Popis výsledku v původním jazyce
The recent development of the high performance computer platforms shows a clear trend towards heterogeneity and hierarchy. In order to utilize the computational power, particular attention must be paid to finding new algorithms or adjust existing ones so that they better match the HPC computer architecture. In this work we consider an alternative to classical time-stepping methods based on use of time-harmonic properties and discuss solution approaches that allow efficient utilization of modern HPC resources. The method in focus is based on a truncated Fourier expansion of the solution of an evolutionary problem. The analysis is done for linear equations and it is remarked on the possibility to use two- or multilevel mesh methods for nonlinear problems, which can enable further, even higher degree of parallelization. nThe arising block matrix system to be solved admits a two-by-two block form with square blocks, for which a very efficient preconditioner exists. It leads to tight eigenvalue bounds for the preconditioned matrix and, hence, to a very fast convergence of a preconditioned Krylov subspace or iterative refinement method. The analytical background is shown as well as some illustrating numerical examples.
Název v anglickém jazyce
Parallel Solution Methods and Preconditioners for Evolution Equations
Popis výsledku anglicky
The recent development of the high performance computer platforms shows a clear trend towards heterogeneity and hierarchy. In order to utilize the computational power, particular attention must be paid to finding new algorithms or adjust existing ones so that they better match the HPC computer architecture. In this work we consider an alternative to classical time-stepping methods based on use of time-harmonic properties and discuss solution approaches that allow efficient utilization of modern HPC resources. The method in focus is based on a truncated Fourier expansion of the solution of an evolutionary problem. The analysis is done for linear equations and it is remarked on the possibility to use two- or multilevel mesh methods for nonlinear problems, which can enable further, even higher degree of parallelization. nThe arising block matrix system to be solved admits a two-by-two block form with square blocks, for which a very efficient preconditioner exists. It leads to tight eigenvalue bounds for the preconditioned matrix and, hence, to a very fast convergence of a preconditioned Krylov subspace or iterative refinement method. The analytical background is shown as well as some illustrating numerical examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Modeling and Analysis
ISSN
1392-6292
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
LT - Litevská republika
Počet stran výsledku
22
Strana od-do
287-308
Kód UT WoS článku
000439208500008
EID výsledku v databázi Scopus
2-s2.0-85046994578