Bio-inspired nanoporous scaffold: electrospun hybrid fibers based on self-assembled block copolymer mineralized with inorganic nanoparticles for bone tissue engineering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F24%3A00581666" target="_blank" >RIV/68378041:_____/24:00581666 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/00914037.2023.2243369" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/00914037.2023.2243369</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00914037.2023.2243369" target="_blank" >10.1080/00914037.2023.2243369</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bio-inspired nanoporous scaffold: electrospun hybrid fibers based on self-assembled block copolymer mineralized with inorganic nanoparticles for bone tissue engineering
Popis výsledku v původním jazyce
Mineralized, bio-inspired nanofibrous scaffolds with controllable architecture and capable of mimicking essential characteristics of bone extracellular matrix at the micro- and nanoscale offer a promising strategy to restore functions or elicit favorable responses for bone tissue regeneration and repair. In this study, a simple approach to fabricate a hybrid scaffold with porous fibers for bone tissue engineering is presented. Non-woven multifunctional nano- and microfibers were fabricated using a block copolymer of poly(e-caprolactone) (PCL) and poly(lactic acid) (PLA) (PL-b-CL) as a matrix and hydroxyapatite (HA) as a functional agent, dissolved in a binary solvent mixture. Physicochemical and thermal characterization as well as biocompatibility analyses were carried out using SaOS-2 cells. The results showed fibers with highly porous surfaces whose pore diameters range in the nanometer scale and all scaffolds exhibited hydrophobicity. HA-modified scaffolds significantly improved cell metabolic activity and proliferation as compared to pristine scaffolds. The biodegradable and biocompatible scaffolds proposed in this study carry great potential for various biomedical applications and in the future, it is expected that they can be used for controlled drug delivery by incorporating growth factors, proteins, or drugs to reduce the inflammatory response and/or to promote bone repair.
Název v anglickém jazyce
Bio-inspired nanoporous scaffold: electrospun hybrid fibers based on self-assembled block copolymer mineralized with inorganic nanoparticles for bone tissue engineering
Popis výsledku anglicky
Mineralized, bio-inspired nanofibrous scaffolds with controllable architecture and capable of mimicking essential characteristics of bone extracellular matrix at the micro- and nanoscale offer a promising strategy to restore functions or elicit favorable responses for bone tissue regeneration and repair. In this study, a simple approach to fabricate a hybrid scaffold with porous fibers for bone tissue engineering is presented. Non-woven multifunctional nano- and microfibers were fabricated using a block copolymer of poly(e-caprolactone) (PCL) and poly(lactic acid) (PLA) (PL-b-CL) as a matrix and hydroxyapatite (HA) as a functional agent, dissolved in a binary solvent mixture. Physicochemical and thermal characterization as well as biocompatibility analyses were carried out using SaOS-2 cells. The results showed fibers with highly porous surfaces whose pore diameters range in the nanometer scale and all scaffolds exhibited hydrophobicity. HA-modified scaffolds significantly improved cell metabolic activity and proliferation as compared to pristine scaffolds. The biodegradable and biocompatible scaffolds proposed in this study carry great potential for various biomedical applications and in the future, it is expected that they can be used for controlled drug delivery by incorporating growth factors, proteins, or drugs to reduce the inflammatory response and/or to promote bone repair.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30404 - Biomaterials (as related to medical implants, devices, sensors)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Polymeric Materials and Polymeric Biomaterials
ISSN
0091-4037
e-ISSN
1563-535X
Svazek periodika
73
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1054-1067
Kód UT WoS článku
001061395400001
EID výsledku v databázi Scopus
2-s2.0-85169807589