Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using ferromagnetic nanoparticles with low Curie temperature for magnetic resonance imaging-guided thermoablation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F16%3A00469817" target="_blank" >RIV/68378271:_____/16:00469817 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378041:_____/16:00469817 RIV/00023001:_____/16:00059932 RIV/00216275:25310/16:39901496

  • Výsledek na webu

    <a href="http://dx.doi.org/10.2147/IJN.S109582" target="_blank" >http://dx.doi.org/10.2147/IJN.S109582</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2147/IJN.S109582" target="_blank" >10.2147/IJN.S109582</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using ferromagnetic nanoparticles with low Curie temperature for magnetic resonance imaging-guided thermoablation

  • Popis výsledku v původním jazyce

    Introduction: Magnetic nanoparticles (NPs) represent a tool for use in magnetic resonance imaging (MRI)-guided thermoablation of tumors using an external high-frequency (HF) magnetic field. To avoid local overheating, perovskite NPs with a lower Curie temperature (T-c) were proposed for use in thermotherapy. However, deposited power decreases when approaching the Curie temperature and consequently may not be sufficient for effective ablation. The goal of the study was to test this hypothesis. nnMethods: Perovskite NPs (T-c = 66 degrees C-74 degrees C) were characterized and tested both in vitro and in vivo. In vitro, the cells suspended with NPs were exposed to a HF magnetic field together with control samples. In vivo, a NP suspension was injected into a induced tumor in rats. Distribution was checked by MRI and the rats were exposed to a HF field together with control animals. Apoptosis in the tissue was evaluated. nnResults and discussion: In vitro, the high concentration of suspended NPs caused an increase of the temperature in the cell sample, leading to cell death. In vivo, MRI confirmed distribution of the NPs in the tumor. The temperature in the tumor with injected NPs did not increase substantially in comparison with animals without particles during HF exposure. We proved that the deposited power from the NPs is too small and that thermoregulation of the animal is sufficient to conduct the heat away. Histology did not detect substantially higher apoptosis in NP-treated animals after ablation. nnConclusion: Magnetic particles with low T-c can be tracked in vivo by MRI and heated by a HF field. The particles are capable of inducing cell apoptosis in suspensions in vitro at high concentrations only. However, their effect in the case of extracellular deposition in vivo is questionable due to low deposited power and active thermoregulation of the tissue.

  • Název v anglickém jazyce

    Using ferromagnetic nanoparticles with low Curie temperature for magnetic resonance imaging-guided thermoablation

  • Popis výsledku anglicky

    Introduction: Magnetic nanoparticles (NPs) represent a tool for use in magnetic resonance imaging (MRI)-guided thermoablation of tumors using an external high-frequency (HF) magnetic field. To avoid local overheating, perovskite NPs with a lower Curie temperature (T-c) were proposed for use in thermotherapy. However, deposited power decreases when approaching the Curie temperature and consequently may not be sufficient for effective ablation. The goal of the study was to test this hypothesis. nnMethods: Perovskite NPs (T-c = 66 degrees C-74 degrees C) were characterized and tested both in vitro and in vivo. In vitro, the cells suspended with NPs were exposed to a HF magnetic field together with control samples. In vivo, a NP suspension was injected into a induced tumor in rats. Distribution was checked by MRI and the rats were exposed to a HF field together with control animals. Apoptosis in the tissue was evaluated. nnResults and discussion: In vitro, the high concentration of suspended NPs caused an increase of the temperature in the cell sample, leading to cell death. In vivo, MRI confirmed distribution of the NPs in the tumor. The temperature in the tumor with injected NPs did not increase substantially in comparison with animals without particles during HF exposure. We proved that the deposited power from the NPs is too small and that thermoregulation of the animal is sufficient to conduct the heat away. Histology did not detect substantially higher apoptosis in NP-treated animals after ablation. nnConclusion: Magnetic particles with low T-c can be tracked in vivo by MRI and heated by a HF field. The particles are capable of inducing cell apoptosis in suspensions in vitro at high concentrations only. However, their effect in the case of extracellular deposition in vivo is questionable due to low deposited power and active thermoregulation of the tissue.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BM - Fyzika pevných látek a magnetismus

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Nanomedicine

  • ISSN

    1178-2013

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    2016

  • Stát vydavatele periodika

    NZ - Nový Zéland

  • Počet stran výsledku

    11

  • Strana od-do

    3801-3811

  • Kód UT WoS článku

    000380901700001

  • EID výsledku v databázi Scopus

    2-s2.0-84983360252