Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantum behavior of terahertz photoconductivity in silicon nanocrystals networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F17%3A00474043" target="_blank" >RIV/68378271:_____/17:00474043 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/17:10366555

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1103/PhysRevB.95.125424" target="_blank" >http://dx.doi.org/10.1103/PhysRevB.95.125424</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.95.125424" target="_blank" >10.1103/PhysRevB.95.125424</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantum behavior of terahertz photoconductivity in silicon nanocrystals networks

  • Popis výsledku v původním jazyce

    Quantum-size effects are essential for understanding the terahertz conductivity of semiconductor nanocrystals, particularly at low temperatures. We derived a quantum mechanical expression for the linear terahertz response of nanocrystals, its introduction into an appropriate effective medium model provides a comprehensive microscopic approach for the analysis of terahertz conductivity spectra as a function of frequency, temperature, and excitation fluence. We performed optical pump–terahertz probe experiments in multilayer Si quantum dot networks with various degrees of percolation at 300 and 20 K and with variable pump fluence. Our theoretical approach was successfully applied to quantitatively interpret all the measured data within a single model. A careful data analysis made it possible to assess the distribution of sizes of nanocrystals participating to the photoconduction.

  • Název v anglickém jazyce

    Quantum behavior of terahertz photoconductivity in silicon nanocrystals networks

  • Popis výsledku anglicky

    Quantum-size effects are essential for understanding the terahertz conductivity of semiconductor nanocrystals, particularly at low temperatures. We derived a quantum mechanical expression for the linear terahertz response of nanocrystals, its introduction into an appropriate effective medium model provides a comprehensive microscopic approach for the analysis of terahertz conductivity spectra as a function of frequency, temperature, and excitation fluence. We performed optical pump–terahertz probe experiments in multilayer Si quantum dot networks with various degrees of percolation at 300 and 20 K and with variable pump fluence. Our theoretical approach was successfully applied to quantitatively interpret all the measured data within a single model. A careful data analysis made it possible to assess the distribution of sizes of nanocrystals participating to the photoconduction.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review B

  • ISSN

    2469-9950

  • e-ISSN

  • Svazek periodika

    95

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000396430200004

  • EID výsledku v databázi Scopus

    2-s2.0-85015914882