Modeling the motion of ferroelectric domain walls with the classical Stefan problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00524861" target="_blank" >RIV/68378271:_____/20:00524861 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevApplied.13.014006" target="_blank" >https://doi.org/10.1103/PhysRevApplied.13.014006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevApplied.13.014006" target="_blank" >10.1103/PhysRevApplied.13.014006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling the motion of ferroelectric domain walls with the classical Stefan problem
Popis výsledku v původním jazyce
With advances in nanotechnology, ferroelectric switching by individual domain walls (DWs) has become a subject of broad interest. Conventional models consider DW motion in a fixed homogeneous or inhomogeneous electric field. However, it is clear that the electric field commonly evolves in time due to the redistribution of bound charges and screening free charges on the ferroelectric surface, particularly due to surface conductance. Taking this effect into account remains a serious challenge. Here we propose a simple concept to describe simultaneously the evolution of the electric field and the DWmotion in a ferroelectric sample. The approach is based on a full analogy between charge transport during ferroelectric switching and heat transport in a moving melting front: the classical Stefan problem. The analogy helps in the establishment of control of DW motion in thin films.n
Název v anglickém jazyce
Modeling the motion of ferroelectric domain walls with the classical Stefan problem
Popis výsledku anglicky
With advances in nanotechnology, ferroelectric switching by individual domain walls (DWs) has become a subject of broad interest. Conventional models consider DW motion in a fixed homogeneous or inhomogeneous electric field. However, it is clear that the electric field commonly evolves in time due to the redistribution of bound charges and screening free charges on the ferroelectric surface, particularly due to surface conductance. Taking this effect into account remains a serious challenge. Here we propose a simple concept to describe simultaneously the evolution of the electric field and the DWmotion in a ferroelectric sample. The approach is based on a full analogy between charge transport during ferroelectric switching and heat transport in a moving melting front: the classical Stefan problem. The analogy helps in the establishment of control of DW motion in thin films.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000760" target="_blank" >EF16_019/0000760: Fyzika pevných látek pro 21. století</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Applied
ISSN
2331-7019
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000505999200002
EID výsledku v databázi Scopus
2-s2.0-85078349374