Boundary effects in general relativity with tetrad variables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00540702" target="_blank" >RIV/68378271:_____/20:00540702 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10714-020-02733-8" target="_blank" >https://doi.org/10.1007/s10714-020-02733-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10714-020-02733-8" target="_blank" >10.1007/s10714-020-02733-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boundary effects in general relativity with tetrad variables
Popis výsledku v původním jazyce
Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners.n
Název v anglickém jazyce
Boundary effects in general relativity with tetrad variables
Popis výsledku anglicky
Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000437" target="_blank" >EF15_003/0000437: Kosmologie, gravitace a temný sektor vesmíru</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
General Relativity and Gravitation
ISSN
0001-7701
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
52
Strana od-do
1-52
Kód UT WoS článku
000567924000002
EID výsledku v databázi Scopus
2-s2.0-85090084555