A brief review on discrete modelling of martensitic phase transformations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00598496" target="_blank" >RIV/68378271:_____/24:00598496 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s40830-023-00466-6" target="_blank" >https://doi.org/10.1007/s40830-023-00466-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40830-023-00466-6" target="_blank" >10.1007/s40830-023-00466-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A brief review on discrete modelling of martensitic phase transformations
Popis výsledku v původním jazyce
Most materials possess microstructural features at small length scales which are either stationary, such as grains and grain boundaries, phases and phase boundaries, precipitates, inclusions or mobile which tend to evolve during thermomechanical loads, such as cracks, twins or mobile interphase boundaries. The mechanical response of materials depends strongly on these microstructural features. Continuum models are frequently incapable of dealing with the latter microstructural features because they lack information on the evolving microstructure. There is an alternative class of models called Discrete Element Models (DEMs) which are applicable to describe the thermomechanical behaviour of solids, fluids and granular matter (material is modelled as a set of interacting point masses). With their inherent discreteness, DEMs are capable of incorporating the effects of microstructure as well as its evolution on the macroscopic behaviour.
Název v anglickém jazyce
A brief review on discrete modelling of martensitic phase transformations
Popis výsledku anglicky
Most materials possess microstructural features at small length scales which are either stationary, such as grains and grain boundaries, phases and phase boundaries, precipitates, inclusions or mobile which tend to evolve during thermomechanical loads, such as cracks, twins or mobile interphase boundaries. The mechanical response of materials depends strongly on these microstructural features. Continuum models are frequently incapable of dealing with the latter microstructural features because they lack information on the evolving microstructure. There is an alternative class of models called Discrete Element Models (DEMs) which are applicable to describe the thermomechanical behaviour of solids, fluids and granular matter (material is modelled as a set of interacting point masses). With their inherent discreteness, DEMs are capable of incorporating the effects of microstructure as well as its evolution on the macroscopic behaviour.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Shape Memory and Superelasticity
ISSN
2199-384X
e-ISSN
2199-3858
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
2-15
Kód UT WoS článku
001103634700001
EID výsledku v databázi Scopus
2-s2.0-85177057624