Advancing scanning probe microscopy simulations: A decade of development in probe-particle models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00599574" target="_blank" >RIV/68378271:_____/24:00599574 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0357016" target="_blank" >https://hdl.handle.net/11104/0357016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cpc.2024.109341" target="_blank" >10.1016/j.cpc.2024.109341</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advancing scanning probe microscopy simulations: A decade of development in probe-particle models
Popis výsledku v původním jazyce
The Probe-Particle Model combines theories designed for the simulation of scanning probe microscopy experiments, employing non-reactive, flexible tip apices to achieve sub-molecular resolution. In the article, we present the latest version of the Probe-Particle Model implemented in the open-source ppafm package, highlighting substantial advancements in accuracy, computational performance, and user-friendliness. To demonstrate this we provide a comprehensive review of approaches for simulating non-contact Atomic Force Microscopy. They vary in complexity from simple Lennard-Jones potential to the latest full-density-based model. We compared those approaches with ab initio calculated references, showcasing their respective merits. All parts of the ppafm package have undergone acceleration by 1-2 orders of magnitude using OpenMP and OpenCL technologies. The updated package includes an interactive graphical user interface and seamless integration into the Python ecosystem via pip, facilitating advanced scripting and interoperability with other software. This adaptability positions ppafm as an ideal tool for high-throughput applications, including the training of machine learning models for the automatic recovery of atomic structures from nc-AFM measurements. We envision significant potential for this application in future single-molecule analysis, synthesis, and advancements in surface science in general. Additionally, we discuss simulations of other sub-molecular scanning-probe imaging techniques, such as bond-resolved scanning tunneling microscopy and Kelvin probe force microscopy, all built on the robust foundation of the Probe-Particle Model. Altogether this demonstrates the broad impact of the model across diverse domains of on-surface science and molecular chemistry.
Název v anglickém jazyce
Advancing scanning probe microscopy simulations: A decade of development in probe-particle models
Popis výsledku anglicky
The Probe-Particle Model combines theories designed for the simulation of scanning probe microscopy experiments, employing non-reactive, flexible tip apices to achieve sub-molecular resolution. In the article, we present the latest version of the Probe-Particle Model implemented in the open-source ppafm package, highlighting substantial advancements in accuracy, computational performance, and user-friendliness. To demonstrate this we provide a comprehensive review of approaches for simulating non-contact Atomic Force Microscopy. They vary in complexity from simple Lennard-Jones potential to the latest full-density-based model. We compared those approaches with ab initio calculated references, showcasing their respective merits. All parts of the ppafm package have undergone acceleration by 1-2 orders of magnitude using OpenMP and OpenCL technologies. The updated package includes an interactive graphical user interface and seamless integration into the Python ecosystem via pip, facilitating advanced scripting and interoperability with other software. This adaptability positions ppafm as an ideal tool for high-throughput applications, including the training of machine learning models for the automatic recovery of atomic structures from nc-AFM measurements. We envision significant potential for this application in future single-molecule analysis, synthesis, and advancements in surface science in general. Additionally, we discuss simulations of other sub-molecular scanning-probe imaging techniques, such as bond-resolved scanning tunneling microscopy and Kelvin probe force microscopy, all built on the robust foundation of the Probe-Particle Model. Altogether this demonstrates the broad impact of the model across diverse domains of on-surface science and molecular chemistry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GM22-06008M" target="_blank" >GM22-06008M: Počítačový návrh templatoveho sestavování, replikace a syntézy na iontových površích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Physics Communications
ISSN
0010-4655
e-ISSN
1879-2944
Svazek periodika
305
Číslo periodika v rámci svazku
Dec
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
109341
Kód UT WoS článku
001295853800001
EID výsledku v databázi Scopus
2-s2.0-85201066796