Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Advancing scanning probe microscopy simulations: A decade of development in probe-particle models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00599574" target="_blank" >RIV/68378271:_____/24:00599574 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0357016" target="_blank" >https://hdl.handle.net/11104/0357016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cpc.2024.109341" target="_blank" >10.1016/j.cpc.2024.109341</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Advancing scanning probe microscopy simulations: A decade of development in probe-particle models

  • Popis výsledku v původním jazyce

    The Probe-Particle Model combines theories designed for the simulation of scanning probe microscopy experiments, employing non-reactive, flexible tip apices to achieve sub-molecular resolution. In the article, we present the latest version of the Probe-Particle Model implemented in the open-source ppafm package, highlighting substantial advancements in accuracy, computational performance, and user-friendliness. To demonstrate this we provide a comprehensive review of approaches for simulating non-contact Atomic Force Microscopy. They vary in complexity from simple Lennard-Jones potential to the latest full-density-based model. We compared those approaches with ab initio calculated references, showcasing their respective merits. All parts of the ppafm package have undergone acceleration by 1-2 orders of magnitude using OpenMP and OpenCL technologies. The updated package includes an interactive graphical user interface and seamless integration into the Python ecosystem via pip, facilitating advanced scripting and interoperability with other software. This adaptability positions ppafm as an ideal tool for high-throughput applications, including the training of machine learning models for the automatic recovery of atomic structures from nc-AFM measurements. We envision significant potential for this application in future single-molecule analysis, synthesis, and advancements in surface science in general. Additionally, we discuss simulations of other sub-molecular scanning-probe imaging techniques, such as bond-resolved scanning tunneling microscopy and Kelvin probe force microscopy, all built on the robust foundation of the Probe-Particle Model. Altogether this demonstrates the broad impact of the model across diverse domains of on-surface science and molecular chemistry.

  • Název v anglickém jazyce

    Advancing scanning probe microscopy simulations: A decade of development in probe-particle models

  • Popis výsledku anglicky

    The Probe-Particle Model combines theories designed for the simulation of scanning probe microscopy experiments, employing non-reactive, flexible tip apices to achieve sub-molecular resolution. In the article, we present the latest version of the Probe-Particle Model implemented in the open-source ppafm package, highlighting substantial advancements in accuracy, computational performance, and user-friendliness. To demonstrate this we provide a comprehensive review of approaches for simulating non-contact Atomic Force Microscopy. They vary in complexity from simple Lennard-Jones potential to the latest full-density-based model. We compared those approaches with ab initio calculated references, showcasing their respective merits. All parts of the ppafm package have undergone acceleration by 1-2 orders of magnitude using OpenMP and OpenCL technologies. The updated package includes an interactive graphical user interface and seamless integration into the Python ecosystem via pip, facilitating advanced scripting and interoperability with other software. This adaptability positions ppafm as an ideal tool for high-throughput applications, including the training of machine learning models for the automatic recovery of atomic structures from nc-AFM measurements. We envision significant potential for this application in future single-molecule analysis, synthesis, and advancements in surface science in general. Additionally, we discuss simulations of other sub-molecular scanning-probe imaging techniques, such as bond-resolved scanning tunneling microscopy and Kelvin probe force microscopy, all built on the robust foundation of the Probe-Particle Model. Altogether this demonstrates the broad impact of the model across diverse domains of on-surface science and molecular chemistry.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GM22-06008M" target="_blank" >GM22-06008M: Počítačový návrh templatoveho sestavování, replikace a syntézy na iontových površích</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Physics Communications

  • ISSN

    0010-4655

  • e-ISSN

    1879-2944

  • Svazek periodika

    305

  • Číslo periodika v rámci svazku

    Dec

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    109341

  • Kód UT WoS článku

    001295853800001

  • EID výsledku v databázi Scopus

    2-s2.0-85201066796