Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evolution equation of Lie-type for finite deformations, and its time-discrete integration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F17%3A00473661" target="_blank" >RIV/68378297:_____/17:00473661 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evolution equation of Lie-type for finite deformations, and its time-discrete integration

  • Popis výsledku v původním jazyce

    The theory of evolution equations of Lie-type analyses a class of systems of timedependent first-order ordinary differential equations on a Lie group (resp. homogeneous space), which are generated by vector fields related to a corresponding finite dimensional Lie algebra. Their interesting geometric features give rise to important tools, and have originated new mathematical techniques and notions used for investigating differential equations. Here, we shall identify such a type of evolution equation within solid mechanics wherein it describes the evolution of finite deformations on the space of all symmetric positive-definite matrices resp. on the general linear group. In fact, while the position and shape of a deformed body take place in the usual three-dimensional Euclidean space R^3, a corresponding progress of the deformation tensor C makes up a trajectory in the space of all symmetric positive-definite matrices – a negatively curved Riemannian symmetric manifold (a specific homogeneous space). We prove that a well-known relation between deformation rate delta C and symmetric velocity gradient d, via deformation gradient F, can actually be interpreted as an equation of Lie-type describing evolution of the deformation tensor C on the configuration space. The same applies to deformation gradient F, which evolves on the general linear group. As a consequence, this identification leads to geometrically consistent time-discrete integration schemes for finite deformation processes, such as the Runge-Kutta-Munthe-Kaas method, or also briefly mentioned the semi-discrete Magnus and Fer expansion methods.

  • Název v anglickém jazyce

    Evolution equation of Lie-type for finite deformations, and its time-discrete integration

  • Popis výsledku anglicky

    The theory of evolution equations of Lie-type analyses a class of systems of timedependent first-order ordinary differential equations on a Lie group (resp. homogeneous space), which are generated by vector fields related to a corresponding finite dimensional Lie algebra. Their interesting geometric features give rise to important tools, and have originated new mathematical techniques and notions used for investigating differential equations. Here, we shall identify such a type of evolution equation within solid mechanics wherein it describes the evolution of finite deformations on the space of all symmetric positive-definite matrices resp. on the general linear group. In fact, while the position and shape of a deformed body take place in the usual three-dimensional Euclidean space R^3, a corresponding progress of the deformation tensor C makes up a trajectory in the space of all symmetric positive-definite matrices – a negatively curved Riemannian symmetric manifold (a specific homogeneous space). We prove that a well-known relation between deformation rate delta C and symmetric velocity gradient d, via deformation gradient F, can actually be interpreted as an equation of Lie-type describing evolution of the deformation tensor C on the configuration space. The same applies to deformation gradient F, which evolves on the general linear group. As a consequence, this identification leads to geometrically consistent time-discrete integration schemes for finite deformation processes, such as the Runge-Kutta-Munthe-Kaas method, or also briefly mentioned the semi-discrete Magnus and Fer expansion methods.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Emerging Concepts in Evolution Equations

  • ISBN

    978-1-53610-861-3

  • Počet stran výsledku

    30

  • Strana od-do

    1-30

  • Počet stran knihy

    80

  • Název nakladatele

    Nova Science

  • Místo vydání

    Hauppauge (NY)

  • Kód UT WoS kapitoly