Geometry of finite deformations and time-incremental analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F16%3A00456940" target="_blank" >RIV/68378297:_____/16:00456940 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0020746216000330" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0020746216000330</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2016.01.019" target="_blank" >10.1016/j.ijnonlinmec.2016.01.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometry of finite deformations and time-incremental analysis
Popis výsledku v původním jazyce
In connection with the origin of computational mechanics and consequent progress of incremental methods, a fundamental problem came up even in solid mechanics - namely how to correctly time-linearize and time-integrate deformation processes within finite deformations. Contrary to small deformations (actually infinitesimal), which represent a correction of an initial configuration in terms of tensor fields and so a description by means of a linear vector space of all symmetric matrices sym(3,R) is well-fitting, a situation with finite deformations is rather more complicated. In fact, while the position and shape of a deformed body take place in the usual three-dimensional Euclidean space R3, a corresponding progress of deformation tensor makes up a trajectory in Sym+(3,R) - a negatively curved Riemannian symmetric manifold. Since this space is not a linear vector space, we cannot simply employ tools from the theory of small deformations, but in order to analyze deformation processes correctly, we have to resort to the corresponding tools from the differential geometry and Lie group theory which are capable of handling the very geometric nature of this space. The paper first briefly recalls a common approach to solid mechanics and then its formulation as a simple Lagrangian system with configuration space Sym+(3,R). After a detailed exposition of the geometry of the configuration space, we finally sum up its consequences for the time-incremental analysis, resulting in clear and unambiguous conclusions.
Název v anglickém jazyce
Geometry of finite deformations and time-incremental analysis
Popis výsledku anglicky
In connection with the origin of computational mechanics and consequent progress of incremental methods, a fundamental problem came up even in solid mechanics - namely how to correctly time-linearize and time-integrate deformation processes within finite deformations. Contrary to small deformations (actually infinitesimal), which represent a correction of an initial configuration in terms of tensor fields and so a description by means of a linear vector space of all symmetric matrices sym(3,R) is well-fitting, a situation with finite deformations is rather more complicated. In fact, while the position and shape of a deformed body take place in the usual three-dimensional Euclidean space R3, a corresponding progress of deformation tensor makes up a trajectory in Sym+(3,R) - a negatively curved Riemannian symmetric manifold. Since this space is not a linear vector space, we cannot simply employ tools from the theory of small deformations, but in order to analyze deformation processes correctly, we have to resort to the corresponding tools from the differential geometry and Lie group theory which are capable of handling the very geometric nature of this space. The paper first briefly recalls a common approach to solid mechanics and then its formulation as a simple Lagrangian system with configuration space Sym+(3,R). After a detailed exposition of the geometry of the configuration space, we finally sum up its consequences for the time-incremental analysis, resulting in clear and unambiguous conclusions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Non-Linear Mechanics
ISSN
0020-7462
e-ISSN
—
Svazek periodika
81
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
230-244
Kód UT WoS článku
000373538500023
EID výsledku v databázi Scopus
2-s2.0-84975110719