Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effects of wind-barrier layout and wind turbulence on aerodynamic stability of cable-supported bridges

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F20%3A00524877" target="_blank" >RIV/68378297:_____/20:00524877 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1061/(ASCE)BE.1943-5592.0001631" target="_blank" >https://doi.org/10.1061/(ASCE)BE.1943-5592.0001631</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001631" target="_blank" >10.1061/(ASCE)BE.1943-5592.0001631</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effects of wind-barrier layout and wind turbulence on aerodynamic stability of cable-supported bridges

  • Popis výsledku v původním jazyce

    Wind barriers are nowadays commonly placed on bridges to protect vehicles from adverse cross-wind effects. In addition to this beneficial influence, wind barriers may adversely affect the bridge dynamic stability. This is particularly exhibited for long-span cable-supported bridges. It is therefore the scope of the present study to analyze the effects of wind barriers on aerodynamic and aeroelastic characteristics of bridge-deck sections of long-span cable-supported bridges together with the respective flow characteristics around bridge-deck sections. The focus is on various arrangements of wind barriers, i.e., (1) wind barriers placed at the windward bridge-deck edge only, (2) wind barriers placed at the leeward bridge-deck edge only, and (3) wind barriers placed at both windward and leeward bridge-deck edges. This was carried out experimentally on small-scale models in a boundary layer wind tunnel. Three typical bridge-deck section models were studied, i.e., Great Belt (Denmark), Kao-Pin Hsi (Taiwan), and Golden Gate (United States). The galloping susceptibility of the bridge-deck sections in all arrangements of wind barriers proved to be the same, as is the case for the empty bridge-deck sections without wind barriers, i.e., from this point of view, wind barriers do not adversely bridge dynamic stability. However, in configurations with the windward wind barrier only, as well as both windward and leeward wind barriers, the flutter susceptibility of the bridge-deck sections increases substantially: i.e., the critical flow velocity for the bridge flutter decreased significantly in comparison with the respective empty bridge-deck sections. For the leeward wind barrier only, the flutter susceptibility of the bridge-deck sections did not change and remained the same as it was for the empty bridge-deck sections. The empty bridge-deck sections do not exhibit any significant change concerning their susceptibility to flutter for various turbulence levels of the incoming freestream flow. The flutter susceptibility of cable-supported bridges equipped with wind barriers is lower in more turbulent incoming flows. The bridge decks with wind barriers are more resilient to flutter in more turbulent winds. Shear layers that separate from the top of the wind barrier may have an important role in the self-excited lift force and the pitch moment and, consequently, the dynamic behavior of bridge decks.

  • Název v anglickém jazyce

    Effects of wind-barrier layout and wind turbulence on aerodynamic stability of cable-supported bridges

  • Popis výsledku anglicky

    Wind barriers are nowadays commonly placed on bridges to protect vehicles from adverse cross-wind effects. In addition to this beneficial influence, wind barriers may adversely affect the bridge dynamic stability. This is particularly exhibited for long-span cable-supported bridges. It is therefore the scope of the present study to analyze the effects of wind barriers on aerodynamic and aeroelastic characteristics of bridge-deck sections of long-span cable-supported bridges together with the respective flow characteristics around bridge-deck sections. The focus is on various arrangements of wind barriers, i.e., (1) wind barriers placed at the windward bridge-deck edge only, (2) wind barriers placed at the leeward bridge-deck edge only, and (3) wind barriers placed at both windward and leeward bridge-deck edges. This was carried out experimentally on small-scale models in a boundary layer wind tunnel. Three typical bridge-deck section models were studied, i.e., Great Belt (Denmark), Kao-Pin Hsi (Taiwan), and Golden Gate (United States). The galloping susceptibility of the bridge-deck sections in all arrangements of wind barriers proved to be the same, as is the case for the empty bridge-deck sections without wind barriers, i.e., from this point of view, wind barriers do not adversely bridge dynamic stability. However, in configurations with the windward wind barrier only, as well as both windward and leeward wind barriers, the flutter susceptibility of the bridge-deck sections increases substantially: i.e., the critical flow velocity for the bridge flutter decreased significantly in comparison with the respective empty bridge-deck sections. For the leeward wind barrier only, the flutter susceptibility of the bridge-deck sections did not change and remained the same as it was for the empty bridge-deck sections. The empty bridge-deck sections do not exhibit any significant change concerning their susceptibility to flutter for various turbulence levels of the incoming freestream flow. The flutter susceptibility of cable-supported bridges equipped with wind barriers is lower in more turbulent incoming flows. The bridge decks with wind barriers are more resilient to flutter in more turbulent winds. Shear layers that separate from the top of the wind barrier may have an important role in the self-excited lift force and the pitch moment and, consequently, the dynamic behavior of bridge decks.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-21817S" target="_blank" >GA19-21817S: Neholonomní interakce a dynamická stabilita aeroelastických soustav</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Bridge Engineering

  • ISSN

    1084-0702

  • e-ISSN

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    04020102

  • Kód UT WoS článku

    000602493000001

  • EID výsledku v databázi Scopus

    2-s2.0-85091775554