Multifold stationary solutions of an auto-parametric non-linear 2DOF system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F20%3A00539616" target="_blank" >RIV/68378297:_____/20:00539616 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.21495/5896-3-130" target="_blank" >https://doi.org/10.21495/5896-3-130</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21495/5896-3-130" target="_blank" >10.21495/5896-3-130</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multifold stationary solutions of an auto-parametric non-linear 2DOF system
Popis výsledku v původním jazyce
A non-linear 2DOF model of a bridge girder with a bluff cross-section under wind loading is used to describe the heave and pitch self-excited motion. Existence conditions of stationary auto-parametric response for both the self-excited case and an assumption of a harmonic load form a non-linear algebraic system of equations. Number of distinct solutions to this algebraic system depends on the frequencies of two principal aero-elastic modes and other system parameters. Thus, the system may possess none, one, or several stationary solutions, whose stability has to be checked using the Routh-Hurwitz conditions. If all quantities entering the system are continuous functions, individual solutions may exhibit (piecewise) continuous dependence on selected system parameters. Thus, multiple identified solutions to the system for a given set of parameters may actually belong to a single solution branch and their values can be determined from the knowledge of the solution branch. Such a situation may significantly simplify assessment of stability of the particular solutions and/or provides an applicable overall description of the system response.
Název v anglickém jazyce
Multifold stationary solutions of an auto-parametric non-linear 2DOF system
Popis výsledku anglicky
A non-linear 2DOF model of a bridge girder with a bluff cross-section under wind loading is used to describe the heave and pitch self-excited motion. Existence conditions of stationary auto-parametric response for both the self-excited case and an assumption of a harmonic load form a non-linear algebraic system of equations. Number of distinct solutions to this algebraic system depends on the frequencies of two principal aero-elastic modes and other system parameters. Thus, the system may possess none, one, or several stationary solutions, whose stability has to be checked using the Routh-Hurwitz conditions. If all quantities entering the system are continuous functions, individual solutions may exhibit (piecewise) continuous dependence on selected system parameters. Thus, multiple identified solutions to the system for a given set of parameters may actually belong to a single solution branch and their values can be determined from the knowledge of the solution branch. Such a situation may significantly simplify assessment of stability of the particular solutions and/or provides an applicable overall description of the system response.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-21817S" target="_blank" >GA19-21817S: Neholonomní interakce a dynamická stabilita aeroelastických soustav</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering mechanics 2020. 26th International conference. Book of full texts
ISBN
978-80-214-5896-3
ISSN
1805-8248
e-ISSN
—
Počet stran výsledku
4
Strana od-do
130-133
Název nakladatele
Brno University od Technology
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
24. 11. 2020
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000667956100025