On an approach to deal with Neumann boundary value problems defined on uncertain domains: Numerical experiments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F11%3A00180239" target="_blank" >RIV/68407700:21110/11:00180239 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0T-52BPK1R-1&_user=640811&_coverDate=05%2F31%2F2011&_rdoc=1&_fmt=hig" target="_blank" >http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0T-52BPK1R-1&_user=640811&_coverDate=05%2F31%2F2011&_rdoc=1&_fmt=hig</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2011.02.005" target="_blank" >10.1016/j.matcom.2011.02.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On an approach to deal with Neumann boundary value problems defined on uncertain domains: Numerical experiments
Popis výsledku v původním jazyce
Neumann boundary value problems for second order elliptic equations are considered on a 2D domain whose boundary is not known and might be even non-Lipschitz. Although the domain of definition is unknown, it is assumed that (a) it contains a known domain(subdomain), (b) it is contained in a known domain (superdomain), and (c) both the subdomain and superdomain have Lipschitz boundary. To cope with the Neumann boundary condition on the unknown boundary and to properly formulate the boundary value problem (BVP), the condition has to be reformulated. A reformulated BVP is used to estimate the difference between the BVP solution on the unknown domain and the BVP solution on the known subdomain or superdomain. To evaluate the estimate, the finite element method is applied. Numerical experiments are performed to check the estimate and its response to a shrinking region of uncertainty.
Název v anglickém jazyce
On an approach to deal with Neumann boundary value problems defined on uncertain domains: Numerical experiments
Popis výsledku anglicky
Neumann boundary value problems for second order elliptic equations are considered on a 2D domain whose boundary is not known and might be even non-Lipschitz. Although the domain of definition is unknown, it is assumed that (a) it contains a known domain(subdomain), (b) it is contained in a known domain (superdomain), and (c) both the subdomain and superdomain have Lipschitz boundary. To cope with the Neumann boundary condition on the unknown boundary and to properly formulate the boundary value problem (BVP), the condition has to be reformulated. A reformulated BVP is used to estimate the difference between the BVP solution on the unknown domain and the BVP solution on the known subdomain or superdomain. To evaluate the estimate, the finite element method is applied. Numerical experiments are performed to check the estimate and its response to a shrinking region of uncertainty.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics and Computers in Simulation
ISSN
0378-4754
e-ISSN
—
Svazek periodika
81
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
1869-1875
Kód UT WoS článku
000290980200011
EID výsledku v databázi Scopus
—