Inverse Problems for Nonlinear Systems via Bayesian Parameter Identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F12%3A00199943" target="_blank" >RIV/68407700:21110/12:00199943 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.siam.org/meetings/uq12/uq12_abstracts.pdf" target="_blank" >http://www.siam.org/meetings/uq12/uq12_abstracts.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inverse Problems for Nonlinear Systems via Bayesian Parameter Identification
Popis výsledku v původním jazyce
Inverse problems are important in engineering science and appear very frequently such as for example in estimation of material porosity and properties describing irreversible behaviour, control of high-speed machining processes etc. At present, most of identification procedures have to cope with ill-possedness as the problems are often considered in a deterministic framework. However, if the parameters are modelled as random variables the process of obtaining more information through experiments in a Bayesian setting becomes well-posed. In this manner the Bayesian information update can be seen as a minimisation of variance. In this work we use the functional approximation of uncertainty and develop a purely deterministic procedure for the updating process. This is then contrasted to a fully Bayesian update based on Markov chain Monte Carlo sampling on a few numerical nonlinear examples. Examples are based on plasticity and nonlinear diffusion models.
Název v anglickém jazyce
Inverse Problems for Nonlinear Systems via Bayesian Parameter Identification
Popis výsledku anglicky
Inverse problems are important in engineering science and appear very frequently such as for example in estimation of material porosity and properties describing irreversible behaviour, control of high-speed machining processes etc. At present, most of identification procedures have to cope with ill-possedness as the problems are often considered in a deterministic framework. However, if the parameters are modelled as random variables the process of obtaining more information through experiments in a Bayesian setting becomes well-posed. In this manner the Bayesian information update can be seen as a minimisation of variance. In this work we use the functional approximation of uncertainty and develop a purely deterministic procedure for the updating process. This is then contrasted to a fully Bayesian update based on Markov chain Monte Carlo sampling on a few numerical nonlinear examples. Examples are based on plasticity and nonlinear diffusion models.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů