Comparison of Numerical Approaches to Bayesian Updating
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00239591" target="_blank" >RIV/68407700:21110/16:00239591 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-27996-1_16" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-27996-1_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-27996-1_16" target="_blank" >10.1007/978-3-319-27996-1_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Numerical Approaches to Bayesian Updating
Popis výsledku v původním jazyce
This paper investigates the Bayesian process of identifying unknown model parameters given prior information and a set of noisy measurement data. There are two approaches being adopted in this research: one that uses the classical formula for measures and probability densities and one that leaves the underlying measure unchanged and updates the relevant random variable. The former is numerically tackled by a Markov chain Monte Carlo procedure based on the Metropolis-Hastings algorithm, whereas the latter is implemented via the ensemble/square root ensemble Kalman filters, as well as the functional approximation approaches in the form of the polynomial chaos based linear Bayesian filter and its corresponding square root algorithm. The study attempts to show the principal differences between full and linear Bayesian updates when a direct or a transformed version of measurements are taken into consideration. In this regard the comparison of both strategies is provided on the example of a steady state diffusion equation with nonlinear and transformed linear measurement operators.
Název v anglickém jazyce
Comparison of Numerical Approaches to Bayesian Updating
Popis výsledku anglicky
This paper investigates the Bayesian process of identifying unknown model parameters given prior information and a set of noisy measurement data. There are two approaches being adopted in this research: one that uses the classical formula for measures and probability densities and one that leaves the underlying measure unchanged and updates the relevant random variable. The former is numerically tackled by a Markov chain Monte Carlo procedure based on the Metropolis-Hastings algorithm, whereas the latter is implemented via the ensemble/square root ensemble Kalman filters, as well as the functional approximation approaches in the form of the polynomial chaos based linear Bayesian filter and its corresponding square root algorithm. The study attempts to show the principal differences between full and linear Bayesian updates when a direct or a transformed version of measurements are taken into consideration. In this regard the comparison of both strategies is provided on the example of a steady state diffusion equation with nonlinear and transformed linear measurement operators.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Computational Methods for Solids and Fluids
ISBN
978-3-319-27996-1
Počet stran výsledku
36
Strana od-do
427-462
Počet stran knihy
497
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Kód UT WoS kapitoly
—