On laser scanning, pavement surface roughness and international roughness index in highway construction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00243288" target="_blank" >RIV/68407700:21110/16:00243288 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14311/EE.2016.294" target="_blank" >http://dx.doi.org/10.14311/EE.2016.294</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/EE.2016.294" target="_blank" >10.14311/EE.2016.294</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On laser scanning, pavement surface roughness and international roughness index in highway construction
Popis výsledku v původním jazyce
The paper reports data from the research project where the objective was to develop and validate a tool that would be publicly available and would leverage the point cloud data commonly acquired on sites to calculate the pavement surface properties such as the International Roughness Index and Roughness. To do so, a unique RIRI program was written in Python to streamline the point cloud data analysis. The program is publicly available under the GNU General Public License. Further, the paper presents data from three test sections where the developed methodology was used to calculate the pavement smoothness properties from a point cloud and compared to classical, reference, methodologies, such as the rod and level and precise levelling. The paper focuses on the variability and precision of all methodologies. It was found that the Pearson type IV distribution is a fitting descriptor for histograms calculated with the help of Freedman and Diaconis’s law from rectified slopes and roughness values with regard to its fitness and use of its parameters for the pavement surface smoothness description.
Název v anglickém jazyce
On laser scanning, pavement surface roughness and international roughness index in highway construction
Popis výsledku anglicky
The paper reports data from the research project where the objective was to develop and validate a tool that would be publicly available and would leverage the point cloud data commonly acquired on sites to calculate the pavement surface properties such as the International Roughness Index and Roughness. To do so, a unique RIRI program was written in Python to streamline the point cloud data analysis. The program is publicly available under the GNU General Public License. Further, the paper presents data from three test sections where the developed methodology was used to calculate the pavement smoothness properties from a point cloud and compared to classical, reference, methodologies, such as the rod and level and precise levelling. The paper focuses on the variability and precision of all methodologies. It was found that the Pearson type IV distribution is a fitting descriptor for histograms calculated with the help of Freedman and Diaconis’s law from rectified slopes and roughness values with regard to its fitness and use of its parameters for the pavement surface smoothness description.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JN - Stavebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020168" target="_blank" >TE01020168: Centrum pro efektivní a udržitelnou dopravní infrastrukturu (CESTI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 6th Eurasphalt & Eurobitume Congress,1st - 3rd June 2016
ISBN
978-80-01-05962-3
ISSN
—
e-ISSN
—
Počet stran výsledku
3
Strana od-do
—
Název nakladatele
Czech Technical University
Místo vydání
Prague
Místo konání akce
Praha
Datum konání akce
1. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—