eXtended variational quasicontinuum methodology for lattice networks with damage and crack propagation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00312057" target="_blank" >RIV/68407700:21110/17:00312057 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/17:00475349
Výsledek na webu
<a href="http://arxiv.org/abs/1612.03876" target="_blank" >http://arxiv.org/abs/1612.03876</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2017.03.042" target="_blank" >10.1016/j.cma.2017.03.042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
eXtended variational quasicontinuum methodology for lattice networks with damage and crack propagation
Popis výsledku v původním jazyce
Lattice networks with dissipative interactions are often employed to analyse materials with discrete micro- or meso-structures, or for a description of heterogeneous materials which can be modelled discretely. They are, however, computationally prohibitive for engineering-scale applications. The (variational) QuasiContinuum (QC) method is a concurrent multiscale approach that reduces their computational cost by fully resolving the (dissipative) lattice network in small regions of interest while coarsening elsewhere. When applied to damageable lattices, moving crack tips can be captured by adaptive mesh refinement schemes, whereas fully -resolved trails in crack wakes can be removed by mesh coarsening. In order to address crack propagation efficiently and accurately, we develop in this contribution the necessary generalizations of the variational QC methodology. First, a suitable definition of crack paths in discrete systems is introduced, which allows for their geometrical representation in terms of the signed distance function. Second, special function enrichments based on the partition of unity concept are adopted, in order to capture kinematics in the wakes of crack tips. Third, a summation rule that reflects the adopted enrichment functions with sufficient degree of accuracy is developed. Finally, as our standpoint is variational, we discuss implications of the mesh refinement and coarsening from an energy-consistency point of view. All theoretical considerations are demonstrated using two numerical examples for which the resulting reaction forces, energy evolutions, and crack paths are compared to those of the direct numerical simulations.
Název v anglickém jazyce
eXtended variational quasicontinuum methodology for lattice networks with damage and crack propagation
Popis výsledku anglicky
Lattice networks with dissipative interactions are often employed to analyse materials with discrete micro- or meso-structures, or for a description of heterogeneous materials which can be modelled discretely. They are, however, computationally prohibitive for engineering-scale applications. The (variational) QuasiContinuum (QC) method is a concurrent multiscale approach that reduces their computational cost by fully resolving the (dissipative) lattice network in small regions of interest while coarsening elsewhere. When applied to damageable lattices, moving crack tips can be captured by adaptive mesh refinement schemes, whereas fully -resolved trails in crack wakes can be removed by mesh coarsening. In order to address crack propagation efficiently and accurately, we develop in this contribution the necessary generalizations of the variational QC methodology. First, a suitable definition of crack paths in discrete systems is introduced, which allows for their geometrical representation in terms of the signed distance function. Second, special function enrichments based on the partition of unity concept are adopted, in order to capture kinematics in the wakes of crack tips. Third, a summation rule that reflects the adopted enrichment functions with sufficient degree of accuracy is developed. Finally, as our standpoint is variational, we discuss implications of the mesh refinement and coarsening from an energy-consistency point of view. All theoretical considerations are demonstrated using two numerical examples for which the resulting reaction forces, energy evolutions, and crack paths are compared to those of the direct numerical simulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-00420S" target="_blank" >GA14-00420S: Kvazikontuální metody pro diskrétní disipativní soustavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods in Applied Mechanics and Engineering
ISSN
0045-7825
e-ISSN
1879-2138
Svazek periodika
320
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
769-792
Kód UT WoS článku
000402212200030
EID výsledku v databázi Scopus
2-s2.0-85018567758