An adaptive variational Quasicontinuum methodology for lattice networks with localized damage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00313822" target="_blank" >RIV/68407700:21110/17:00313822 - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/abs/1604.04754" target="_blank" >http://arxiv.org/abs/1604.04754</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.5518" target="_blank" >10.1002/nme.5518</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An adaptive variational Quasicontinuum methodology for lattice networks with localized damage
Popis výsledku v původním jazyce
Lattice networks with dissipative interactions can be used to describe the mechanics of discrete mesostructures of materials such as 3D-printed structures and foams. This contribution deals with the crack initiation and propagation in such materials and focuses on an adaptive multiscale approach that captures the spatially evolving fracture. Lattice networks naturally incorporate non-locality, large deformations and dissipative mechanisms taking place inside fracture zones. Because the physically relevant length scales are significantly larger than those of individual interactions, discrete models are computationally expensive. The Quasicontinuum (QC) method is a multiscale approach specifically constructed for discrete models. This method reduces the computational cost by fully resolving the underlying lattice only in regions of interest, while coarsening elsewhere. In this contribution, the (variational) QC is applied to damageable lattices for engineering-scale predictions. To deal with the spatially evolving fracture zone, an adaptive scheme is proposed. Implications induced by the adaptive procedure are discussed from the energy-consistency point of view, and theoretical considerations are demonstrated on two examples. The first one serves as a proof of concept, illustrates the consistency of the adaptive schemes and presents errors in energies. The second one demonstrates the performance of the adaptive QC scheme for a more complex problem.
Název v anglickém jazyce
An adaptive variational Quasicontinuum methodology for lattice networks with localized damage
Popis výsledku anglicky
Lattice networks with dissipative interactions can be used to describe the mechanics of discrete mesostructures of materials such as 3D-printed structures and foams. This contribution deals with the crack initiation and propagation in such materials and focuses on an adaptive multiscale approach that captures the spatially evolving fracture. Lattice networks naturally incorporate non-locality, large deformations and dissipative mechanisms taking place inside fracture zones. Because the physically relevant length scales are significantly larger than those of individual interactions, discrete models are computationally expensive. The Quasicontinuum (QC) method is a multiscale approach specifically constructed for discrete models. This method reduces the computational cost by fully resolving the underlying lattice only in regions of interest, while coarsening elsewhere. In this contribution, the (variational) QC is applied to damageable lattices for engineering-scale predictions. To deal with the spatially evolving fracture zone, an adaptive scheme is proposed. Implications induced by the adaptive procedure are discussed from the energy-consistency point of view, and theoretical considerations are demonstrated on two examples. The first one serves as a proof of concept, illustrates the consistency of the adaptive schemes and presents errors in energies. The second one demonstrates the performance of the adaptive QC scheme for a more complex problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-00420S" target="_blank" >GA14-00420S: Kvazikontuální metody pro diskrétní disipativní soustavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
1097-0207
Svazek periodika
112
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
174-200
Kód UT WoS článku
000410680100004
EID výsledku v databázi Scopus
2-s2.0-85016585949