Automatic classification of point clouds for highway documentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00326161" target="_blank" >RIV/68407700:21110/18:00326161 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/326183327_Automatic_classification_of_point_clouds_for_highway_documentation" target="_blank" >https://www.researchgate.net/publication/326183327_Automatic_classification_of_point_clouds_for_highway_documentation</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2018.58.0165" target="_blank" >10.14311/AP.2018.58.0165</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic classification of point clouds for highway documentation
Popis výsledku v původním jazyce
Mobile laser scanning systems confirmed the capability for detailed roadway documentation. Hand in hand with enormous data sets acquired by these systems is the increase in the demands on the fast and effective processing of these data sets. The crucial part of the roadway data sets processing, as well as in many other applications, is the extraction of objects of interest from point clouds. In this work, an approach to the rough classification of mobile laser scanning data based on raster image processing techniques is presented. The developed method offers a solution for a computationally low demanding classification of the highway environment. The aim of this method is to provide a background for the easier use of more sophisticated algorithms and a specific analysis. The method is evaluated using different metrics on a 1.8km long data set obtained by LYNX Mobile Mapper over a highway.
Název v anglickém jazyce
Automatic classification of point clouds for highway documentation
Popis výsledku anglicky
Mobile laser scanning systems confirmed the capability for detailed roadway documentation. Hand in hand with enormous data sets acquired by these systems is the increase in the demands on the fast and effective processing of these data sets. The crucial part of the roadway data sets processing, as well as in many other applications, is the extraction of objects of interest from point clouds. In this work, an approach to the rough classification of mobile laser scanning data based on raster image processing techniques is presented. The developed method offers a solution for a computationally low demanding classification of the highway environment. The aim of this method is to provide a background for the easier use of more sophisticated algorithms and a specific analysis. The method is evaluated using different metrics on a 1.8km long data set obtained by LYNX Mobile Mapper over a highway.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Polytechnica
ISSN
1805-2363
e-ISSN
1805-2363
Svazek periodika
58
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
165-170
Kód UT WoS článku
000438884700002
EID výsledku v databázi Scopus
2-s2.0-85049504823