FFT-based homogenisation accelerated by low-rank approximation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00334225" target="_blank" >RIV/68407700:21110/19:00334225 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FFT-based homogenisation accelerated by low-rank approximation
Popis výsledku v původním jazyce
Fast Fourier transform (FFT) based methods has turned out to be an ef- fective computational approach for numerical homogenisation. Particularly, Fourier-Galerkin methods are computational methods for partial differential equations that are discretised with trigonometric polynomials. Its computa- tional effectiveness benefits from efficient FFT based algorithms as well as a favourable condition number. Here this kind of methods are accelerated by low-rank tensor approximation techniques for a solution field using canonical, Tucker, and tensor train formats. This reduced order model also allows to efficiently compute suboptimal global basis functions without solving the full problem. It significantly reduces computational and memory requirements for problems with a material coefficient field that admits a moderate rank approximation. The advantages of this approach against those using full material tensors are demonstrated using numerical examples for the model homogenisation problem that consists of a scalar linear elliptic variational problem defined in two and three dimensional setting with continuous and discontinuous heterogeneous material coefficients. This approach opens up the potential of an efficient reduced order modelling of large scale engineering problems with heterogeneous material.
Název v anglickém jazyce
FFT-based homogenisation accelerated by low-rank approximation
Popis výsledku anglicky
Fast Fourier transform (FFT) based methods has turned out to be an ef- fective computational approach for numerical homogenisation. Particularly, Fourier-Galerkin methods are computational methods for partial differential equations that are discretised with trigonometric polynomials. Its computa- tional effectiveness benefits from efficient FFT based algorithms as well as a favourable condition number. Here this kind of methods are accelerated by low-rank tensor approximation techniques for a solution field using canonical, Tucker, and tensor train formats. This reduced order model also allows to efficiently compute suboptimal global basis functions without solving the full problem. It significantly reduces computational and memory requirements for problems with a material coefficient field that admits a moderate rank approximation. The advantages of this approach against those using full material tensors are demonstrated using numerical examples for the model homogenisation problem that consists of a scalar linear elliptic variational problem defined in two and three dimensional setting with continuous and discontinuous heterogeneous material coefficients. This approach opens up the potential of an efficient reduced order modelling of large scale engineering problems with heterogeneous material.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů