Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00350862" target="_blank" >RIV/68407700:21110/21:00350862 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/rs13153050" target="_blank" >https://doi.org/10.3390/rs13153050</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs13153050" target="_blank" >10.3390/rs13153050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge
Popis výsledku v původním jazyce
Point clouds derived using structure from motion (SfM) algorithms from unmanned aerial vehicles (UAVs) are increasingly used in civil engineering practice. This includes areas such as (vegetated) rock outcrops or faces above linear constructions (e.g., railways) where accurate terrain identification, i.e., ground filtering, is highly difficult but, at the same time, important for safety management. In this paper, we evaluated the performance of standard geometrical ground filtering algorithms (a progressive morphological filter (PMF), a simple morphological filter (SMRF) or a cloth simulation filter (CSF)) and a structural filter, CANUPO (CAracterisation de NUages de POints), for ground identification in a point cloud derived by SfM from UAV imagery in such an area (a railway ledge and the adjacent rock face). The performance was evaluated both in the original position and after levelling the point cloud (its transformation into the horizontal plane). The poor results of geometrical filters (total errors of approximately 6-60% with PMF performing the worst) and a mediocre result of CANUPO (approximately 4%) led us to combine these complementary approaches, yielding total errors of 1.2% (CANUPO+SMRF) and 0.9% (CANUPO+CSF). This new technique could represent an excellent solution for ground filtering of high-density point clouds of such steep vegetated areas that can be well-used, for example, in civil engineering practice.
Název v anglickém jazyce
Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge
Popis výsledku anglicky
Point clouds derived using structure from motion (SfM) algorithms from unmanned aerial vehicles (UAVs) are increasingly used in civil engineering practice. This includes areas such as (vegetated) rock outcrops or faces above linear constructions (e.g., railways) where accurate terrain identification, i.e., ground filtering, is highly difficult but, at the same time, important for safety management. In this paper, we evaluated the performance of standard geometrical ground filtering algorithms (a progressive morphological filter (PMF), a simple morphological filter (SMRF) or a cloth simulation filter (CSF)) and a structural filter, CANUPO (CAracterisation de NUages de POints), for ground identification in a point cloud derived by SfM from UAV imagery in such an area (a railway ledge and the adjacent rock face). The performance was evaluated both in the original position and after levelling the point cloud (its transformation into the horizontal plane). The poor results of geometrical filters (total errors of approximately 6-60% with PMF performing the worst) and a mediocre result of CANUPO (approximately 4%) led us to combine these complementary approaches, yielding total errors of 1.2% (CANUPO+SMRF) and 0.9% (CANUPO+CSF). This new technique could represent an excellent solution for ground filtering of high-density point clouds of such steep vegetated areas that can be well-used, for example, in civil engineering practice.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
13
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000682158900001
EID výsledku v databázi Scopus
2-s2.0-85112114098