Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00350862" target="_blank" >RIV/68407700:21110/21:00350862 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/rs13153050" target="_blank" >https://doi.org/10.3390/rs13153050</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs13153050" target="_blank" >10.3390/rs13153050</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge

  • Popis výsledku v původním jazyce

    Point clouds derived using structure from motion (SfM) algorithms from unmanned aerial vehicles (UAVs) are increasingly used in civil engineering practice. This includes areas such as (vegetated) rock outcrops or faces above linear constructions (e.g., railways) where accurate terrain identification, i.e., ground filtering, is highly difficult but, at the same time, important for safety management. In this paper, we evaluated the performance of standard geometrical ground filtering algorithms (a progressive morphological filter (PMF), a simple morphological filter (SMRF) or a cloth simulation filter (CSF)) and a structural filter, CANUPO (CAracterisation de NUages de POints), for ground identification in a point cloud derived by SfM from UAV imagery in such an area (a railway ledge and the adjacent rock face). The performance was evaluated both in the original position and after levelling the point cloud (its transformation into the horizontal plane). The poor results of geometrical filters (total errors of approximately 6-60% with PMF performing the worst) and a mediocre result of CANUPO (approximately 4%) led us to combine these complementary approaches, yielding total errors of 1.2% (CANUPO+SMRF) and 0.9% (CANUPO+CSF). This new technique could represent an excellent solution for ground filtering of high-density point clouds of such steep vegetated areas that can be well-used, for example, in civil engineering practice.

  • Název v anglickém jazyce

    Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge

  • Popis výsledku anglicky

    Point clouds derived using structure from motion (SfM) algorithms from unmanned aerial vehicles (UAVs) are increasingly used in civil engineering practice. This includes areas such as (vegetated) rock outcrops or faces above linear constructions (e.g., railways) where accurate terrain identification, i.e., ground filtering, is highly difficult but, at the same time, important for safety management. In this paper, we evaluated the performance of standard geometrical ground filtering algorithms (a progressive morphological filter (PMF), a simple morphological filter (SMRF) or a cloth simulation filter (CSF)) and a structural filter, CANUPO (CAracterisation de NUages de POints), for ground identification in a point cloud derived by SfM from UAV imagery in such an area (a railway ledge and the adjacent rock face). The performance was evaluated both in the original position and after levelling the point cloud (its transformation into the horizontal plane). The poor results of geometrical filters (total errors of approximately 6-60% with PMF performing the worst) and a mediocre result of CANUPO (approximately 4%) led us to combine these complementary approaches, yielding total errors of 1.2% (CANUPO+SMRF) and 0.9% (CANUPO+CSF). This new technique could represent an excellent solution for ground filtering of high-density point clouds of such steep vegetated areas that can be well-used, for example, in civil engineering practice.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000682158900001

  • EID výsledku v databázi Scopus

    2-s2.0-85112114098