Multidirectional Shift Rasterization (MDSR) Algorithm for Effective Identification of Ground in Dense Point Clouds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00360273" target="_blank" >RIV/68407700:21110/22:00360273 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/rs14194916" target="_blank" >https://doi.org/10.3390/rs14194916</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs14194916" target="_blank" >10.3390/rs14194916</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multidirectional Shift Rasterization (MDSR) Algorithm for Effective Identification of Ground in Dense Point Clouds
Popis výsledku v původním jazyce
With the ever-increasing popularity of unmanned aerial vehicles and other platforms providing dense point clouds, filters for the identification of ground points in such dense clouds are needed. Many filters have been proposed and are widely used, usually based on the determination of an original surface approximation and subsequent identification of points within a predefined distance from such surface. We presented a new filter, the multidirectional shift rasterization (MDSR) algorithm, which is based on a different principle, i.e., on the identification of just the lowest points in individual grid cells, shifting the grid along both the planar axis and subsequent tilting of the entire grid. The principle was presented in detail and both visually and numerically compared with other commonly used ground filters (PMF, SMRF, CSF, and ATIN) on three sites with different ruggedness and vegetation density. Visually, the MDSR filter showed the smoothest and thinnest ground profiles, with the ATIN the only filter comparably performing. The same was confirmed when comparing the ground filtered by other filters with the MDSR-based surface. The goodness of fit with the original cloud is demonstrated by the root mean square deviations (RMSDs) of the points from the original cloud found below the MDSR-generated surface (ranging, depending on the site, between 0.6 and 2.5 cm). In conclusion, this paper introduced a newly developed MDSR filter that outstandingly performed at all sites, identifying the ground points with great accuracy while filtering out the maximum of vegetation and above-ground points and outperforming the aforementioned widely used filters. The filter dilutes the cloud somewhat; in such dense point clouds, however, this can be perceived as a benefit rather than as a disadvantage.
Název v anglickém jazyce
Multidirectional Shift Rasterization (MDSR) Algorithm for Effective Identification of Ground in Dense Point Clouds
Popis výsledku anglicky
With the ever-increasing popularity of unmanned aerial vehicles and other platforms providing dense point clouds, filters for the identification of ground points in such dense clouds are needed. Many filters have been proposed and are widely used, usually based on the determination of an original surface approximation and subsequent identification of points within a predefined distance from such surface. We presented a new filter, the multidirectional shift rasterization (MDSR) algorithm, which is based on a different principle, i.e., on the identification of just the lowest points in individual grid cells, shifting the grid along both the planar axis and subsequent tilting of the entire grid. The principle was presented in detail and both visually and numerically compared with other commonly used ground filters (PMF, SMRF, CSF, and ATIN) on three sites with different ruggedness and vegetation density. Visually, the MDSR filter showed the smoothest and thinnest ground profiles, with the ATIN the only filter comparably performing. The same was confirmed when comparing the ground filtered by other filters with the MDSR-based surface. The goodness of fit with the original cloud is demonstrated by the root mean square deviations (RMSDs) of the points from the original cloud found below the MDSR-generated surface (ranging, depending on the site, between 0.6 and 2.5 cm). In conclusion, this paper introduced a newly developed MDSR filter that outstandingly performed at all sites, identifying the ground points with great accuracy while filtering out the maximum of vegetation and above-ground points and outperforming the aforementioned widely used filters. The filter dilutes the cloud somewhat; in such dense point clouds, however, this can be perceived as a benefit rather than as a disadvantage.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/CK03000168" target="_blank" >CK03000168: Inteligentní metody pořizování a analýzy digitálních dat pro inspekce mostů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
000867909400001
EID výsledku v databázi Scopus
2-s2.0-85139913998