Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using color-only vegetation indexes to remove vegetation from otherwise mostly mono-material point clouds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00364333" target="_blank" >RIV/68407700:21110/22:00364333 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.46544/AMS.v27i4.20" target="_blank" >https://doi.org/10.46544/AMS.v27i4.20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.46544/AMS.v27i4.20" target="_blank" >10.46544/AMS.v27i4.20</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using color-only vegetation indexes to remove vegetation from otherwise mostly mono-material point clouds

  • Popis výsledku v původním jazyce

    Point clouds are now a standard way of describing objects in many engineering disciplines, whether they are man-made objects such as structures, buildings, or various types of structures. Commonly used methods of acquiring such data include ground, UAV, or even aerial photogrammetry, followed by terrestrial, UAV, and aerial scanning. After measurement (by the scanner) or calculation (from photogrammetry), the point cloud goes through extensive processing that essentially transforms the unordered mass of points into a usable data set. One of the important steps is removing points representing obstructing objects and features, including vegetation in particular. Here, many filtering methods based on different principles are available and suitable for application to different scenes. This paper presents a new method of filtering point clouds based on the visible spectrum color principle using vegetation indexes determined from RGB system colors only. Since each sensor has to some extent, an individual interpretation of the colors, it cannot be assumed to determine specific boundaries of what is and is no longer vegetation. Therefore, it was proposed to use means clustering to simplify the operator's work. The method was also designed in such a way that the entire evaluation could be implemented in the freely available CloudCompare software. The procedure was tested on three different sites with different terrain and vegetation characteristics showing, which demonstrated the applicability of this method to data where the color information (green) uniquely identifies vegetation. The selected vegetation filters ExG, ExR, ExB, and ExGr were tested, where ExG was the best. Kmeans clustering helps an operator to distinguish more easily between vegetation and the rest of the point cloud without compromising the quality of the result. The method is practically implementable using the freely downloadable and usable CloudCompare software.

  • Název v anglickém jazyce

    Using color-only vegetation indexes to remove vegetation from otherwise mostly mono-material point clouds

  • Popis výsledku anglicky

    Point clouds are now a standard way of describing objects in many engineering disciplines, whether they are man-made objects such as structures, buildings, or various types of structures. Commonly used methods of acquiring such data include ground, UAV, or even aerial photogrammetry, followed by terrestrial, UAV, and aerial scanning. After measurement (by the scanner) or calculation (from photogrammetry), the point cloud goes through extensive processing that essentially transforms the unordered mass of points into a usable data set. One of the important steps is removing points representing obstructing objects and features, including vegetation in particular. Here, many filtering methods based on different principles are available and suitable for application to different scenes. This paper presents a new method of filtering point clouds based on the visible spectrum color principle using vegetation indexes determined from RGB system colors only. Since each sensor has to some extent, an individual interpretation of the colors, it cannot be assumed to determine specific boundaries of what is and is no longer vegetation. Therefore, it was proposed to use means clustering to simplify the operator's work. The method was also designed in such a way that the entire evaluation could be implemented in the freely available CloudCompare software. The procedure was tested on three different sites with different terrain and vegetation characteristics showing, which demonstrated the applicability of this method to data where the color information (green) uniquely identifies vegetation. The selected vegetation filters ExG, ExR, ExB, and ExGr were tested, where ExG was the best. Kmeans clustering helps an operator to distinguish more easily between vegetation and the rest of the point cloud without compromising the quality of the result. The method is practically implementable using the freely downloadable and usable CloudCompare software.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/CK03000168" target="_blank" >CK03000168: Inteligentní metody pořizování a analýzy digitálních dat pro inspekce mostů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Montanistica Slovaca

  • ISSN

    1335-1788

  • e-ISSN

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    13

  • Strana od-do

    1089-1101

  • Kód UT WoS článku

    000956037000014

  • EID výsledku v databázi Scopus

    2-s2.0-85149254367