Filtering Green Vegetation Out from Colored Point Clouds of Rocky Terrains Based on Various Vegetation Indices: Comparison of Simple Statistical Methods, Support Vector Machine, and Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00367336" target="_blank" >RIV/68407700:21110/23:00367336 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/rs15133254" target="_blank" >https://doi.org/10.3390/rs15133254</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs15133254" target="_blank" >10.3390/rs15133254</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Filtering Green Vegetation Out from Colored Point Clouds of Rocky Terrains Based on Various Vegetation Indices: Comparison of Simple Statistical Methods, Support Vector Machine, and Neural Network
Popis výsledku v původním jazyce
Filtering out vegetation from a point cloud based on color is only rarely used, largely due to the lack of knowledge of the suitability of input information (color, vegetation indices) and the thresholding methods. We have evaluated multiple vegetation indices (ExG, ExR, ExB, ExGr, GRVI, MGRVI, RGBVI, IKAW, VARI, CIVE, GLI, and VEG) and combined them with 10 methods of threshold determination based on training set selection (including machine learning methods) and the renowned Otsu's method. All these combinations were applied to four clouds representing vegetated rocky terrain, and the results were compared. The ExG and GLI indices were generally the most suitable for this purpose, with the best F-scores of 97.7 and 95.4, respectively, and the best-balanced accuracies for the same combination of the method/vegetation index of 98.9 and 98.3%, respectively. Surprisingly, these best results were achieved using the simplest method of threshold determination, considering only a single class (vegetation) with a normal distribution. This algorithm outperformed all other methods, including those based on a support vector machine and a deep neural network. Thanks to its simplicity and ease of use (only several patches representing vegetation must be manually selected as a training set), this method can be recommended for vegetation removal from rocky and anthropogenic surfaces.
Název v anglickém jazyce
Filtering Green Vegetation Out from Colored Point Clouds of Rocky Terrains Based on Various Vegetation Indices: Comparison of Simple Statistical Methods, Support Vector Machine, and Neural Network
Popis výsledku anglicky
Filtering out vegetation from a point cloud based on color is only rarely used, largely due to the lack of knowledge of the suitability of input information (color, vegetation indices) and the thresholding methods. We have evaluated multiple vegetation indices (ExG, ExR, ExB, ExGr, GRVI, MGRVI, RGBVI, IKAW, VARI, CIVE, GLI, and VEG) and combined them with 10 methods of threshold determination based on training set selection (including machine learning methods) and the renowned Otsu's method. All these combinations were applied to four clouds representing vegetated rocky terrain, and the results were compared. The ExG and GLI indices were generally the most suitable for this purpose, with the best F-scores of 97.7 and 95.4, respectively, and the best-balanced accuracies for the same combination of the method/vegetation index of 98.9 and 98.3%, respectively. Surprisingly, these best results were achieved using the simplest method of threshold determination, considering only a single class (vegetation) with a normal distribution. This algorithm outperformed all other methods, including those based on a support vector machine and a deep neural network. Thanks to its simplicity and ease of use (only several patches representing vegetation must be manually selected as a training set), this method can be recommended for vegetation removal from rocky and anthropogenic surfaces.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/CK03000168" target="_blank" >CK03000168: Inteligentní metody pořizování a analýzy digitálních dat pro inspekce mostů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
001030870000001
EID výsledku v databázi Scopus
2-s2.0-85165167453