Color-Based Point Cloud Classification Using a Novel Gaussian Mixed Modeling-Based Approach versus a Deep Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00371141" target="_blank" >RIV/68407700:21110/24:00371141 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/rs16010115" target="_blank" >https://doi.org/10.3390/rs16010115</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs16010115" target="_blank" >10.3390/rs16010115</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Color-Based Point Cloud Classification Using a Novel Gaussian Mixed Modeling-Based Approach versus a Deep Neural Network
Popis výsledku v původním jazyce
The classification of point clouds is an important research topic due to the increasing speed, accuracy, and detail of their acquisition. Classification using only color is basically absent in the literature; the few available papers provide only algorithms with limited usefulness (transformation of three-dimensional color information to a one-dimensional one, such as intensity or vegetation indices). Here, we proposed two methods for classifying point clouds in RGB space (without using spatial information) and evaluated the classification success since it allows a computationally undemanding classification potentially applicable to a wide range of scenes. The first is based on Gaussian mixture modeling, modified to exploit specific properties of the RGB space (a finite number of integer combinations, with these combinations repeated in the same class) to automatically determine the number of spatial normal distributions needed to describe a class (mGMM). The other method is based on a deep neural network (DNN), for which different configurations (number of hidden layers and number of neurons in the layers) and different numbers of training subsets were tested. Real measured data from three sites with different numbers of classified classes and different “complexity” of classification in terms of color distinctiveness were used for testing. Classification success rates averaged 99.0% (accuracy) and 96.2% (balanced accuracy) for the mGMM method and averaged 97.3% and 96.7% (balanced accuracy) for the DNN method in terms of the best parameter combinations identified.
Název v anglickém jazyce
Color-Based Point Cloud Classification Using a Novel Gaussian Mixed Modeling-Based Approach versus a Deep Neural Network
Popis výsledku anglicky
The classification of point clouds is an important research topic due to the increasing speed, accuracy, and detail of their acquisition. Classification using only color is basically absent in the literature; the few available papers provide only algorithms with limited usefulness (transformation of three-dimensional color information to a one-dimensional one, such as intensity or vegetation indices). Here, we proposed two methods for classifying point clouds in RGB space (without using spatial information) and evaluated the classification success since it allows a computationally undemanding classification potentially applicable to a wide range of scenes. The first is based on Gaussian mixture modeling, modified to exploit specific properties of the RGB space (a finite number of integer combinations, with these combinations repeated in the same class) to automatically determine the number of spatial normal distributions needed to describe a class (mGMM). The other method is based on a deep neural network (DNN), for which different configurations (number of hidden layers and number of neurons in the layers) and different numbers of training subsets were tested. Real measured data from three sites with different numbers of classified classes and different “complexity” of classification in terms of color distinctiveness were used for testing. Classification success rates averaged 99.0% (accuracy) and 96.2% (balanced accuracy) for the mGMM method and averaged 97.3% and 96.7% (balanced accuracy) for the DNN method in terms of the best parameter combinations identified.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/CK03000168" target="_blank" >CK03000168: Inteligentní metody pořizování a analýzy digitálních dat pro inspekce mostů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
16
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
001140317600001
EID výsledku v databázi Scopus
2-s2.0-85181961797