Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00351514" target="_blank" >RIV/68407700:21110/21:00351514 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.istruc.2021.05.096" target="_blank" >https://doi.org/10.1016/j.istruc.2021.05.096</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.istruc.2021.05.096" target="_blank" >10.1016/j.istruc.2021.05.096</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network

  • Popis výsledku v původním jazyce

    In this study, a deep learning-based axial capacity prediction for cold-formed steel channel sections is developed using Deep Belief Network (DBN). A total of 10,500 data points for training the DBN are generated from nonlinear elasto plastic finite element analysis, which incorporated both initial imperfections, as recommended by the Australian/New Zealand Standard (AS/NZS 4600:2018) and residual stresses as recommended by Moen et al. A comparison against experimental results found in the literature was conducted. It was found that the DBN was conservative by 9%, 6% and 8% for stub columns, intermediate columns, and slender columns, respectively. When compared against a typical shallow artificial neural network (Backpropagation Neural Network) and a typical machine learning model (Linear regression model based on PaddlePaddle), it was shown that DBN performed around 2% better than both with the same training data. When the same comparison was made for both the Effective Width Method and the Direct Strength Method, it was found that they were conservative by 15%, 13%, and 15%, respectively. Based on the DBN output data, new and improved design equations for AS/NZS 4600:2018 were proposed.

  • Název v anglickém jazyce

    Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network

  • Popis výsledku anglicky

    In this study, a deep learning-based axial capacity prediction for cold-formed steel channel sections is developed using Deep Belief Network (DBN). A total of 10,500 data points for training the DBN are generated from nonlinear elasto plastic finite element analysis, which incorporated both initial imperfections, as recommended by the Australian/New Zealand Standard (AS/NZS 4600:2018) and residual stresses as recommended by Moen et al. A comparison against experimental results found in the literature was conducted. It was found that the DBN was conservative by 9%, 6% and 8% for stub columns, intermediate columns, and slender columns, respectively. When compared against a typical shallow artificial neural network (Backpropagation Neural Network) and a typical machine learning model (Linear regression model based on PaddlePaddle), it was shown that DBN performed around 2% better than both with the same training data. When the same comparison was made for both the Effective Width Method and the Direct Strength Method, it was found that they were conservative by 15%, 13%, and 15%, respectively. Based on the DBN output data, new and improved design equations for AS/NZS 4600:2018 were proposed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Structures

  • ISSN

    2352-0124

  • e-ISSN

    2352-0124

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    2021

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    2792-2802

  • Kód UT WoS článku

    000701963100005

  • EID výsledku v databázi Scopus

    2-s2.0-85108251667