Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00351514" target="_blank" >RIV/68407700:21110/21:00351514 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.istruc.2021.05.096" target="_blank" >https://doi.org/10.1016/j.istruc.2021.05.096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.istruc.2021.05.096" target="_blank" >10.1016/j.istruc.2021.05.096</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network
Popis výsledku v původním jazyce
In this study, a deep learning-based axial capacity prediction for cold-formed steel channel sections is developed using Deep Belief Network (DBN). A total of 10,500 data points for training the DBN are generated from nonlinear elasto plastic finite element analysis, which incorporated both initial imperfections, as recommended by the Australian/New Zealand Standard (AS/NZS 4600:2018) and residual stresses as recommended by Moen et al. A comparison against experimental results found in the literature was conducted. It was found that the DBN was conservative by 9%, 6% and 8% for stub columns, intermediate columns, and slender columns, respectively. When compared against a typical shallow artificial neural network (Backpropagation Neural Network) and a typical machine learning model (Linear regression model based on PaddlePaddle), it was shown that DBN performed around 2% better than both with the same training data. When the same comparison was made for both the Effective Width Method and the Direct Strength Method, it was found that they were conservative by 15%, 13%, and 15%, respectively. Based on the DBN output data, new and improved design equations for AS/NZS 4600:2018 were proposed.
Název v anglickém jazyce
Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network
Popis výsledku anglicky
In this study, a deep learning-based axial capacity prediction for cold-formed steel channel sections is developed using Deep Belief Network (DBN). A total of 10,500 data points for training the DBN are generated from nonlinear elasto plastic finite element analysis, which incorporated both initial imperfections, as recommended by the Australian/New Zealand Standard (AS/NZS 4600:2018) and residual stresses as recommended by Moen et al. A comparison against experimental results found in the literature was conducted. It was found that the DBN was conservative by 9%, 6% and 8% for stub columns, intermediate columns, and slender columns, respectively. When compared against a typical shallow artificial neural network (Backpropagation Neural Network) and a typical machine learning model (Linear regression model based on PaddlePaddle), it was shown that DBN performed around 2% better than both with the same training data. When the same comparison was made for both the Effective Width Method and the Direct Strength Method, it was found that they were conservative by 15%, 13%, and 15%, respectively. Based on the DBN output data, new and improved design equations for AS/NZS 4600:2018 were proposed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Structures
ISSN
2352-0124
e-ISSN
2352-0124
Svazek periodika
33
Číslo periodika v rámci svazku
2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
2792-2802
Kód UT WoS článku
000701963100005
EID výsledku v databázi Scopus
2-s2.0-85108251667