Scaling an Artificial Neural Network-Based Water Quality Index Model from Small to Large Catchments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00357899" target="_blank" >RIV/68407700:21110/22:00357899 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/w14060920" target="_blank" >https://doi.org/10.3390/w14060920</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/w14060920" target="_blank" >10.3390/w14060920</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scaling an Artificial Neural Network-Based Water Quality Index Model from Small to Large Catchments
Popis výsledku v původním jazyce
Scaling models is one of the challenges for water resource planning and management, with the aim of bringing the developed models into practice by applying them to predict water quality and quantity for catchments that lack sufficient data. For this study, we evaluated artificial neural network (ANN) training algorithms to predict the water quality index in a source catchment. Then, multiple linear regression (MLR) models were developed, using the predicted water quality index of the ANN training algorithms and water quality variables, as dependent and independent variables, respectively. The most appropriate MLR model has been selected on the basis of the Akaike information criterion, sensitivity and uncertainty analyses. The performance of the MLR model was then evaluated by a variable aggregation and disaggregation approach, for upscaling and downscaling proposes, using the data from four very large- and three large-sized catchments and from eight medium-, three small- and seven very small-sized catchments, where they are located in the southern basin of the Caspian Sea
Název v anglickém jazyce
Scaling an Artificial Neural Network-Based Water Quality Index Model from Small to Large Catchments
Popis výsledku anglicky
Scaling models is one of the challenges for water resource planning and management, with the aim of bringing the developed models into practice by applying them to predict water quality and quantity for catchments that lack sufficient data. For this study, we evaluated artificial neural network (ANN) training algorithms to predict the water quality index in a source catchment. Then, multiple linear regression (MLR) models were developed, using the predicted water quality index of the ANN training algorithms and water quality variables, as dependent and independent variables, respectively. The most appropriate MLR model has been selected on the basis of the Akaike information criterion, sensitivity and uncertainty analyses. The performance of the MLR model was then evaluated by a variable aggregation and disaggregation approach, for upscaling and downscaling proposes, using the data from four very large- and three large-sized catchments and from eight medium-, three small- and seven very small-sized catchments, where they are located in the southern basin of the Caspian Sea
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10503 - Water resources
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water
ISSN
2073-4441
e-ISSN
2073-4441
Svazek periodika
14
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000774430900001
EID výsledku v databázi Scopus
2-s2.0-85127334644