Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A machine learning approach for the prediction of very thin wearing layers asphalt concretes volumetric properties and performance

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00370836" target="_blank" >RIV/68407700:21110/23:00370836 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1063/5.0170467" target="_blank" >https://doi.org/10.1063/5.0170467</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0170467" target="_blank" >10.1063/5.0170467</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A machine learning approach for the prediction of very thin wearing layers asphalt concretes volumetric properties and performance

  • Popis výsledku v původním jazyce

    In recent years, many researchers in the field of pavement engineering have worked with the aim of developing a model capable of predicting the mechanical behavior of a mixture starting from its composition’s parameters. This has been done following two different approaches. The first involved the use of advanced constitutive laws based on the materials mechanics; the second, instead of being physically based, was data-driven. The present work belongs to this second context and aims to present, implement and apply a strategy to develop the optimal model for solving an assigned predictive problem. Specifically, a Machine Learning approach, a Feedforward Backpropagation Shallow Neural Network, was investigated. The objective was to correlate stiffness modulus, air voids and voids in the mineral aggregate to the mixture main composition’s parameters identified in: bitumen content, particle size and a categorical variable distinguishing the bitumen type and production site. Since the maximum aggregate size is 10 mm, the sieves considered were of 10, 6.3, 2, 0.5 and 0.063-mm diameters. The present study focused on 92 variants of asphalt concretes for very thin road pavement wearing layers produced both in plant and in laboratory. Despite the wide variation ranges of each parameter considered, the optimal model returns fully satisfactory performance. The overall Pearson correlation coefficient is equal to 0.9490, also by virtue of the innovative algorithms implemented as k-fold Cross-Validation (CV) and Bayesian Optimization (BO). These algorithms have allowed on the one hand the improvement of the model’s predictive performance making them more reliable and, on the other hand, the optimization of hyperparameters and architecture. The methodology developed can become an important reference in this field since it is independent from the specific predictive application. In this sense, it can help other researchers in the fine-tuning of neural models in the field of pavement engineering.

  • Název v anglickém jazyce

    A machine learning approach for the prediction of very thin wearing layers asphalt concretes volumetric properties and performance

  • Popis výsledku anglicky

    In recent years, many researchers in the field of pavement engineering have worked with the aim of developing a model capable of predicting the mechanical behavior of a mixture starting from its composition’s parameters. This has been done following two different approaches. The first involved the use of advanced constitutive laws based on the materials mechanics; the second, instead of being physically based, was data-driven. The present work belongs to this second context and aims to present, implement and apply a strategy to develop the optimal model for solving an assigned predictive problem. Specifically, a Machine Learning approach, a Feedforward Backpropagation Shallow Neural Network, was investigated. The objective was to correlate stiffness modulus, air voids and voids in the mineral aggregate to the mixture main composition’s parameters identified in: bitumen content, particle size and a categorical variable distinguishing the bitumen type and production site. Since the maximum aggregate size is 10 mm, the sieves considered were of 10, 6.3, 2, 0.5 and 0.063-mm diameters. The present study focused on 92 variants of asphalt concretes for very thin road pavement wearing layers produced both in plant and in laboratory. Despite the wide variation ranges of each parameter considered, the optimal model returns fully satisfactory performance. The overall Pearson correlation coefficient is equal to 0.9490, also by virtue of the innovative algorithms implemented as k-fold Cross-Validation (CV) and Bayesian Optimization (BO). These algorithms have allowed on the one hand the improvement of the model’s predictive performance making them more reliable and, on the other hand, the optimization of hyperparameters and architecture. The methodology developed can become an important reference in this field since it is independent from the specific predictive application. In this sense, it can help other researchers in the fine-tuning of neural models in the field of pavement engineering.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    World Multidisciplinary civil engineering-architecture-urban planning symposium WMCAUS 2022

  • ISBN

    978-0-7354-4663-2

  • ISSN

    1551-7616

  • e-ISSN

    1551-7616

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    AIP Publishing

  • Místo vydání

    Melville, NY

  • Místo konání akce

    Praha

  • Datum konání akce

    5. 9. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku