Predicting volumetric properties and mechanical characteristics of asphalt concretes for thin wearing layers using a categorical boosting model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00375578" target="_blank" >RIV/68407700:21110/24:00375578 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1201/9781003402541-108" target="_blank" >https://doi.org/10.1201/9781003402541-108</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1201/9781003402541-108" target="_blank" >10.1201/9781003402541-108</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting volumetric properties and mechanical characteristics of asphalt concretes for thin wearing layers using a categorical boosting model
Popis výsledku v původním jazyce
In recent years, new modeling strategies based on data-driven approaches are gaining increas-ing popularity in the field of pavement engineering. This study is aimed at developing a novel predictive model based on a supervised categorical boosting (CatBoost) algorithm that allows volumetric properties and mechanical characteristics of asphalt concretes (ACs) for thin wear-ing layers to be simultaneously predicted. The research involved 92 AC specimens produced both in laboratory and in plant with two different types of bitumen: a conventional and a modified one. In particular, air voids content, voids in the mineral aggregate, and stiffness modulus at 20°C were successfully correlated to bitumen content, particle size parameters and a categorical variable distinguishing the mixture production site and the binder type. The best model hyperparameters were accurately determined, and several performance metrics were evaluated to confirm the remarkable predictive capabilities achieved by the developed machine learning model.
Název v anglickém jazyce
Predicting volumetric properties and mechanical characteristics of asphalt concretes for thin wearing layers using a categorical boosting model
Popis výsledku anglicky
In recent years, new modeling strategies based on data-driven approaches are gaining increas-ing popularity in the field of pavement engineering. This study is aimed at developing a novel predictive model based on a supervised categorical boosting (CatBoost) algorithm that allows volumetric properties and mechanical characteristics of asphalt concretes (ACs) for thin wear-ing layers to be simultaneously predicted. The research involved 92 AC specimens produced both in laboratory and in plant with two different types of bitumen: a conventional and a modified one. In particular, air voids content, voids in the mineral aggregate, and stiffness modulus at 20°C were successfully correlated to bitumen content, particle size parameters and a categorical variable distinguishing the mixture production site and the binder type. The best model hyperparameters were accurately determined, and several performance metrics were evaluated to confirm the remarkable predictive capabilities achieved by the developed machine learning model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Bituminous Mixtures and Pavements VIII
ISBN
978-1-003-40254-1
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
919-927
Název nakladatele
CRC Press/Balkema
Místo vydání
Leiden
Místo konání akce
Thessaloniki
Datum konání akce
12. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—