Image-Based Random Fields in Numerical Modeling of Civil Engineering Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00382878" target="_blank" >RIV/68407700:21110/23:00382878 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image-Based Random Fields in Numerical Modeling of Civil Engineering Problems
Popis výsledku v původním jazyce
This thesis is focused on testing the random fields derived from image analysis in real engineering problems. In particular, we study two-dimensional stationary heat conduction and nonlinear damage mechanics problems. Our goal is to represent material heterogeneity and phase change using well-designed random field parameters. In this work, we utilize four structural patterns of materials; three are artificially generated with known parameters, while the last pattern is a scan of real material - the Liapor concrete. A subsequent study is performed on a total of six different versions of random fields constructed using Karhunen-Loève expansion. The random fields are distinguished by the different covariance kernels or by the modification of their continuous values to binary ones. The random fields are statistically compared with reference cut-outs from the original images, both in terms of the inputs to the material models and their model responses - temperature, displacement, and stress. The computational simulations of the material models are performed using the quasi-Monte Carlo (QMC) method with the design of random input variables by the Latin Hypercube Sampling (LHS). It is shown that the proposed approach can bring significant performance and dimensionality reduction to computational problems dealing with the modeling of heterogeneous materials. This strategy is well suited for the probabilistic approaches used in material modeling.
Název v anglickém jazyce
Image-Based Random Fields in Numerical Modeling of Civil Engineering Problems
Popis výsledku anglicky
This thesis is focused on testing the random fields derived from image analysis in real engineering problems. In particular, we study two-dimensional stationary heat conduction and nonlinear damage mechanics problems. Our goal is to represent material heterogeneity and phase change using well-designed random field parameters. In this work, we utilize four structural patterns of materials; three are artificially generated with known parameters, while the last pattern is a scan of real material - the Liapor concrete. A subsequent study is performed on a total of six different versions of random fields constructed using Karhunen-Loève expansion. The random fields are distinguished by the different covariance kernels or by the modification of their continuous values to binary ones. The random fields are statistically compared with reference cut-outs from the original images, both in terms of the inputs to the material models and their model responses - temperature, displacement, and stress. The computational simulations of the material models are performed using the quasi-Monte Carlo (QMC) method with the design of random input variables by the Latin Hypercube Sampling (LHS). It is shown that the proposed approach can bring significant performance and dimensionality reduction to computational problems dealing with the modeling of heterogeneous materials. This strategy is well suited for the probabilistic approaches used in material modeling.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TH75020002" target="_blank" >TH75020002: Inovativní návrh materiálů založený na hlubokém učení a optimalizaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů