Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Preconditioned discontinuous Galerkin method and convection-diffusion-reaction problems with guaranteed bounds to resulting spectra

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00372258" target="_blank" >RIV/68407700:21110/24:00372258 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/nla.2549" target="_blank" >https://doi.org/10.1002/nla.2549</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/nla.2549" target="_blank" >10.1002/nla.2549</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Preconditioned discontinuous Galerkin method and convection-diffusion-reaction problems with guaranteed bounds to resulting spectra

  • Popis výsledku v původním jazyce

    This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection-diffusion-reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection-)diffusion-reaction problems.

  • Název v anglickém jazyce

    Preconditioned discontinuous Galerkin method and convection-diffusion-reaction problems with guaranteed bounds to resulting spectra

  • Popis výsledku anglicky

    This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection-diffusion-reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection-)diffusion-reaction problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Linear Algebra with Applications

  • ISSN

    1070-5325

  • e-ISSN

    1099-1506

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

  • Kód UT WoS článku

    001157852100001

  • EID výsledku v databázi Scopus

    2-s2.0-85184674599