Sparse polynomial chaos expansions for uncertainty quantification in thermal tomography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00382838" target="_blank" >RIV/68407700:21110/24:00382838 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cam.2023.115406" target="_blank" >https://doi.org/10.1016/j.cam.2023.115406</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115406" target="_blank" >10.1016/j.cam.2023.115406</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse polynomial chaos expansions for uncertainty quantification in thermal tomography
Popis výsledku v původním jazyce
This contribution presents the identification strategy of thermal parameters relying solely on data measured on boundaries - thermal tomography. The idea is to obtain crucial information about the thermal properties inside the domain under consideration while keeping the test sample intact. Such methodology perfectly fits into historic preservation where it is of particular interest to perform only non-destructive surface measurements. We propose an advanced, accelerated, and reliable inverse solver for thermal tomography problems. Here, Bayesian inference is addressed as a method, where unknown parameters are modeled as random variables regularizing the inverse problem. The obtained results are probability distributions - posterior distributions - summarizing all available information and any remaining uncertainty in the values of thermal parameters. Novelties of our approach consist in the combination of (i) formulation of parameter identification in a probabilistic setting, and (ii) use of the surrogate models based on the sparse polynomial chaos expansion. This new sparse formulation significantly reduces the total number of polynomial terms and represents the main achievement of this paper.& COPY; 2023 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Sparse polynomial chaos expansions for uncertainty quantification in thermal tomography
Popis výsledku anglicky
This contribution presents the identification strategy of thermal parameters relying solely on data measured on boundaries - thermal tomography. The idea is to obtain crucial information about the thermal properties inside the domain under consideration while keeping the test sample intact. Such methodology perfectly fits into historic preservation where it is of particular interest to perform only non-destructive surface measurements. We propose an advanced, accelerated, and reliable inverse solver for thermal tomography problems. Here, Bayesian inference is addressed as a method, where unknown parameters are modeled as random variables regularizing the inverse problem. The obtained results are probability distributions - posterior distributions - summarizing all available information and any remaining uncertainty in the values of thermal parameters. Novelties of our approach consist in the combination of (i) formulation of parameter identification in a probabilistic setting, and (ii) use of the surrogate models based on the sparse polynomial chaos expansion. This new sparse formulation significantly reduces the total number of polynomial terms and represents the main achievement of this paper.& COPY; 2023 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
436
Číslo periodika v rámci svazku
115406
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001028963100001
EID výsledku v databázi Scopus
2-s2.0-85164247022