Quadratic neural unit is a good compromise between linear models and neural networks for industrial applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F10%3A00173684" target="_blank" >RIV/68407700:21220/10:00173684 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5599677" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5599677</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/COGINF.2010.5599677" target="_blank" >10.1109/COGINF.2010.5599677</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quadratic neural unit is a good compromise between linear models and neural networks for industrial applications
Popis výsledku v původním jazyce
The paper discusses the quadratic neural unit (QNU) and highlights its attractiveness for industrial applications such as for plant modeling, control, and time series prediction. Linear systems are still often preferred in control applications for theirsolvable and single solution nature and for the clarity to the most application engineers. Artificial neural networks are powerful cognitive nonlinear tools, but their nonlinear strength is naturally repaid with the local minima problem, overfitting, andhigh demands for application-correct neural architecture and optimization technique that often require skilled users. The QNU is the important midpoint between linear systems and highly nonlinear neural networks because the QNU is relatively very strongin nonlinear approximation; however, its optimization and performance have fast and convex-like nature, and its mathematical structure and the derivation of the learning rules is very comprehensible and efficient for implementation.
Název v anglickém jazyce
Quadratic neural unit is a good compromise between linear models and neural networks for industrial applications
Popis výsledku anglicky
The paper discusses the quadratic neural unit (QNU) and highlights its attractiveness for industrial applications such as for plant modeling, control, and time series prediction. Linear systems are still often preferred in control applications for theirsolvable and single solution nature and for the clarity to the most application engineers. Artificial neural networks are powerful cognitive nonlinear tools, but their nonlinear strength is naturally repaid with the local minima problem, overfitting, andhigh demands for application-correct neural architecture and optimization technique that often require skilled users. The QNU is the important midpoint between linear systems and highly nonlinear neural networks because the QNU is relatively very strongin nonlinear approximation; however, its optimization and performance have fast and convex-like nature, and its mathematical structure and the derivation of the learning rules is very comprehensible and efficient for implementation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on
ISBN
978-1-4244-8040-1
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
556-560
Název nakladatele
IEEE Computer Society Press
Místo vydání
Los Alamitos
Místo konání akce
Beijing
Datum konání akce
7. 7. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—