Potentials of Quadratic Neural Unit for Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F13%3A00212026" target="_blank" >RIV/68407700:21220/13:00212026 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.igi-global.com/chapter/potentials-quadratic-neural-unit-applications/72791" target="_blank" >http://www.igi-global.com/chapter/potentials-quadratic-neural-unit-applications/72791</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-4666-2651-5.ch023" target="_blank" >10.4018/978-1-4666-2651-5.ch023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Potentials of Quadratic Neural Unit for Applications
Popis výsledku v původním jazyce
The paper discusses the quadratic neural unit (QNU) and highlights its attractiveness for industrial applications such as for plant modeling, control, and time series prediction. Linear systems are still often preferred in industrial control applicationsfor their solvable and single solution nature and for the clarity to the most application engineers. Artificial neural networks are powerful cognitive nonlinear tools, but their nonlinear strength is naturally repaid with the local minima problem, overfitting, and high demands for application-correct neural architecture and optimization technique that often require skilled users. The QNU is the important midpoint between linear systems and highly nonlinear neural networks because the QNU is relativelyvery strong in nonlinear approximation; however, its optimization and performance have fast and convex-like nature, and its mathematical structure and the derivation of the learning rules is very comprehensible and efficient for implement
Název v anglickém jazyce
Potentials of Quadratic Neural Unit for Applications
Popis výsledku anglicky
The paper discusses the quadratic neural unit (QNU) and highlights its attractiveness for industrial applications such as for plant modeling, control, and time series prediction. Linear systems are still often preferred in industrial control applicationsfor their solvable and single solution nature and for the clarity to the most application engineers. Artificial neural networks are powerful cognitive nonlinear tools, but their nonlinear strength is naturally repaid with the local minima problem, overfitting, and high demands for application-correct neural architecture and optimization technique that often require skilled users. The QNU is the important midpoint between linear systems and highly nonlinear neural networks because the QNU is relativelyvery strong in nonlinear approximation; however, its optimization and performance have fast and convex-like nature, and its mathematical structure and the derivation of the learning rules is very comprehensible and efficient for implement
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Abstract Intelligence and Soft Computing
ISBN
9781466626829
Počet stran výsledku
12
Strana od-do
343-354
Počet stran knihy
456
Název nakladatele
IGI Global
Místo vydání
Hershey, Pennsylvania
Kód UT WoS kapitoly
—