Potentials of Quadratic Neural Unit for Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F11%3A00185582" target="_blank" >RIV/68407700:21220/11:00185582 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.igi-global.com/article/potentials-quadratic-neural-unit-applications/60745" target="_blank" >http://www.igi-global.com/article/potentials-quadratic-neural-unit-applications/60745</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/IJSSCI.2011070101" target="_blank" >10.4018/IJSSCI.2011070101</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Potentials of Quadratic Neural Unit for Applications
Popis výsledku v původním jazyce
The paper discusses the quadratic neural unit (QNU) and its attractiveness for industrial applications such as for plant modeling, control, and time series prediction. Linear systems are still often preferred in industrial control applications for theirsolvable and single solution nature and for the clarity to the most application engineers. Artificial neural networks are powerful cognitive nonlinear tools, but their nonlinear strength is naturally repaid with the local minima problem, overfitting, andhigh demands for application-correct neural architecture and optimization technique that often require skilled users. The QNU is the important midpoint between linear systems and highly nonlinear neural networks because the QNU is relatively very strongin nonlinear approximation; however, its optimization and performance have fast and convex-like nature, and its mathematical structure and the derivation of the learning rules is very comprehensible and efficient for implementation.
Název v anglickém jazyce
Potentials of Quadratic Neural Unit for Applications
Popis výsledku anglicky
The paper discusses the quadratic neural unit (QNU) and its attractiveness for industrial applications such as for plant modeling, control, and time series prediction. Linear systems are still often preferred in industrial control applications for theirsolvable and single solution nature and for the clarity to the most application engineers. Artificial neural networks are powerful cognitive nonlinear tools, but their nonlinear strength is naturally repaid with the local minima problem, overfitting, andhigh demands for application-correct neural architecture and optimization technique that often require skilled users. The QNU is the important midpoint between linear systems and highly nonlinear neural networks because the QNU is relatively very strongin nonlinear approximation; however, its optimization and performance have fast and convex-like nature, and its mathematical structure and the derivation of the learning rules is very comprehensible and efficient for implementation.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Software Science and Computational Intelligence (IJSSCI)
ISSN
1942-9045
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—