Elastic Properties of Human Osteon and Osteonal Lamella Computed by a Bidirectional Micromechanical Model and Validated by Nanoindentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F15%3A00229378" target="_blank" >RIV/68407700:21220/15:00229378 - isvavai.cz</a>
Výsledek na webu
<a href="http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=2279321" target="_blank" >http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=2279321</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4030407" target="_blank" >10.1115/1.4030407</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elastic Properties of Human Osteon and Osteonal Lamella Computed by a Bidirectional Micromechanical Model and Validated by Nanoindentation
Popis výsledku v původním jazyce
Knowledge of the anisotropic elastic properties of osteon and osteonal lamellae provides a better understanding of various pathophysiological conditions, such as aging, osteoporosis, osteoarthritis and other degenerative diseases. For this reason, it is important to investigate and understand the elasticity of cortical bone. We created a bidirectional micromechanical model based on inverse homogenization for predicting the elastic properties of osteon and osteonal lamellae of cortical bone. The shape, the dimensions and the curvature of osteon and osteonal lamellae are described by appropriately chosen curvilinear coordinate systems, so the model operates close to the real morphology of these bone components. The model was used to calculate nine orthotropic elastic constants of osteonal lamellae. The input values have the elastic properties of a single osteon. We also expressed the dependence of the elastic properties of the lamellae on the angle of orientation. To validate the model, we performed nanoindentation tests on several osteonal lamellae. We compared the experimental results with the calculated results, and there was good agreement between them. The inverted model was used to calculate the elastic properties of a single osteon, where the input values are the elastic constants of osteonal lamellae. These calculations reveal that the model can be used in both directions of homogenization, i.e. direct homogenization and also inverse homogenization. The model described here can provide either the unknown elastic properties of a single lamella from the known elastic properties at the level of a single osteon, or the unknown elastic properties of a single osteon from the known elastic properties at the level of a single lamella.
Název v anglickém jazyce
Elastic Properties of Human Osteon and Osteonal Lamella Computed by a Bidirectional Micromechanical Model and Validated by Nanoindentation
Popis výsledku anglicky
Knowledge of the anisotropic elastic properties of osteon and osteonal lamellae provides a better understanding of various pathophysiological conditions, such as aging, osteoporosis, osteoarthritis and other degenerative diseases. For this reason, it is important to investigate and understand the elasticity of cortical bone. We created a bidirectional micromechanical model based on inverse homogenization for predicting the elastic properties of osteon and osteonal lamellae of cortical bone. The shape, the dimensions and the curvature of osteon and osteonal lamellae are described by appropriately chosen curvilinear coordinate systems, so the model operates close to the real morphology of these bone components. The model was used to calculate nine orthotropic elastic constants of osteonal lamellae. The input values have the elastic properties of a single osteon. We also expressed the dependence of the elastic properties of the lamellae on the angle of orientation. To validate the model, we performed nanoindentation tests on several osteonal lamellae. We compared the experimental results with the calculated results, and there was good agreement between them. The inverted model was used to calculate the elastic properties of a single osteon, where the input values are the elastic constants of osteonal lamellae. These calculations reveal that the model can be used in both directions of homogenization, i.e. direct homogenization and also inverse homogenization. The model described here can provide either the unknown elastic properties of a single lamella from the known elastic properties at the level of a single osteon, or the unknown elastic properties of a single osteon from the known elastic properties at the level of a single lamella.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EI - Biotechnologie a bionika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TA01010185" target="_blank" >TA01010185: Nové materiály a povrchové vrstvy pro bionický návrh kloubních náhrad</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Biomechanical Engineering
ISSN
0148-0731
e-ISSN
—
Svazek periodika
137
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000357336300002
EID výsledku v databázi Scopus
2-s2.0-84931282141