E_mobile_Energy_WP01
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F15%3A00240043" target="_blank" >RIV/68407700:21220/15:00240043 - isvavai.cz</a>
Výsledek na webu
<a href="http://fs12120/softlib/2015/E_mobile_Energy.zip" target="_blank" >http://fs12120/softlib/2015/E_mobile_Energy.zip</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
E_mobile_Energy_WP01
Popis výsledku v původním jazyce
Model of battery electric vehicle energy consumption suitable for optimization in Design Assistance System (DASY) software is based on simplified but comprehensive model of vehicle longitudinal dynamics (driving resistance and powertrain efficiency including HAVC system). Model includes algebraic and differential equations for system dynamics with regression models of powertrain losses and suitability of energy recuperation during braking or going downhill. Thermal capacity of powertrain cooling system and car body HVAC is integrated. HVAC system contains heat pumps utilizing waste heat from cooling system. Non-dimensional power, speed or force limiting parameters define a small set of 9-13 optimization generic variables valid during the whole trip and subjected to optimization procedure. Model predicting energy consumption and the range available is applied to pre-defined route obtained by combining e-map and vehicle-to-infrastructure communication (traffic density, weather conditions, etc.). It uses predictions from e-horizon during a trip to cut unnecessary energy consumption (e.g., braking going up-hill). Loading/unloading and charging stops with possibility of temperature pre-conditioning are taken into account. The model is prepared for up-dating of optimized route schedule during a trip, adding adaptive features to basic pre-trip optimization. Model can be applied to vehicle electronic control unit. The on-line calibration is possible if data logging is used by comparing the achieved consumption with prediction. Pavel Steinbauer, Petr Denk, Jan Macek, Josef Morkus, Zbyněk Šika: E-vehicle energy consumption optimization based on fleet and infrastructure information. Advanced Mechatronic Solutions, Springer 2015 ISBN 978-3-319-23921-7, pp. 273-278.
Název v anglickém jazyce
E_mobile_Energy_WP01
Popis výsledku anglicky
Model of battery electric vehicle energy consumption suitable for optimization in Design Assistance System (DASY) software is based on simplified but comprehensive model of vehicle longitudinal dynamics (driving resistance and powertrain efficiency including HAVC system). Model includes algebraic and differential equations for system dynamics with regression models of powertrain losses and suitability of energy recuperation during braking or going downhill. Thermal capacity of powertrain cooling system and car body HVAC is integrated. HVAC system contains heat pumps utilizing waste heat from cooling system. Non-dimensional power, speed or force limiting parameters define a small set of 9-13 optimization generic variables valid during the whole trip and subjected to optimization procedure. Model predicting energy consumption and the range available is applied to pre-defined route obtained by combining e-map and vehicle-to-infrastructure communication (traffic density, weather conditions, etc.). It uses predictions from e-horizon during a trip to cut unnecessary energy consumption (e.g., braking going up-hill). Loading/unloading and charging stops with possibility of temperature pre-conditioning are taken into account. The model is prepared for up-dating of optimized route schedule during a trip, adding adaptive features to basic pre-trip optimization. Model can be applied to vehicle electronic control unit. The on-line calibration is possible if data logging is used by comparing the achieved consumption with prediction. Pavel Steinbauer, Petr Denk, Jan Macek, Josef Morkus, Zbyněk Šika: E-vehicle energy consumption optimization based on fleet and infrastructure information. Advanced Mechatronic Solutions, Springer 2015 ISBN 978-3-319-23921-7, pp. 273-278.
Klasifikace
Druh
R - Software
CEP obor
JO - Pozemní dopravní systémy a zařízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Údaje specifické pro druh výsledku
Interní identifikační kód produktu
E_mobile_Energy_v9_T06
Technické parametry
1-15 MB EXCEL podle délky a složitosti trasy, velmi složité algebraické vzorce programované pomocí Equation Editor; externí součást DASY
Ekonomické parametry
cena 100 000 Kč; umožňuje rychlou prediktivní optimalizaci i během jízdy a kalibraci parametrů porovnáním výsledků s predikcí. Zadání trasy je poskytováno dalšími programy.
IČO vlastníka výsledku
68407700
Název vlastníka
12000