Temperature dependence of electrical resistivity in oxidized vanadium films grown by the GLAD technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00300637" target="_blank" >RIV/68407700:21220/16:00300637 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.surfcoat.2016.07.057" target="_blank" >http://dx.doi.org/10.1016/j.surfcoat.2016.07.057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfcoat.2016.07.057" target="_blank" >10.1016/j.surfcoat.2016.07.057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Temperature dependence of electrical resistivity in oxidized vanadium films grown by the GLAD technique
Popis výsledku v původním jazyce
Vanadium and vanadiumoxide thin films are deposited by DC magnetron sputtering. A first series of pure vanadiumfilms are prepared by glancing angle deposition (GLAD). The incident angle α of the particle flux is systematically changed from 0 to 85°. For the second series, the angle α is kept at 85° and oxygen gas is injected during the growth by means of the reactive gas pulsing process (RGPP). A constant pulsing period P = 16 s is used whereas the oxygen injection time tON is varied from0 to 6 s. After depositing, films are annealed in air following 11 incremental cycles from roomtemperature up to 550 °C. For both series, the DC electrical resistivity is systematically measured during the annealing treatment. Vanadium films sputter deposited by GLAD become sensitive to the temperature for incident angles α higher than 60°. The most significant annealing effect is observed for films prepared with α=85° with a strong increase of resistivity from 2.6 x 10-5 to 4.9 x 10-3 Ωm. It is mainly assigned to the oxidation of GLAD vanadium films, which is favoured by the high porous morphology produced for the highest incident angles. The resistivity vs. temperature evolution is also measured and related to the occurrence of the VO2 phase. By combining GLAD and RGPP processes, the reversible variation of resistivity associated to the VO2 phase is even more pronounced. Oxygen pulsing during deposition and the voided structure produced for the highest incident angles enhance the oxidation of vanadiumthrough the films thickness. The porous architecture by GLAD and the oxygen injection by RGPP have to be carefully controlled and optimized for the growth of vanadium oxide compounds, especially to favour the formation of the VO2 phase.
Název v anglickém jazyce
Temperature dependence of electrical resistivity in oxidized vanadium films grown by the GLAD technique
Popis výsledku anglicky
Vanadium and vanadiumoxide thin films are deposited by DC magnetron sputtering. A first series of pure vanadiumfilms are prepared by glancing angle deposition (GLAD). The incident angle α of the particle flux is systematically changed from 0 to 85°. For the second series, the angle α is kept at 85° and oxygen gas is injected during the growth by means of the reactive gas pulsing process (RGPP). A constant pulsing period P = 16 s is used whereas the oxygen injection time tON is varied from0 to 6 s. After depositing, films are annealed in air following 11 incremental cycles from roomtemperature up to 550 °C. For both series, the DC electrical resistivity is systematically measured during the annealing treatment. Vanadium films sputter deposited by GLAD become sensitive to the temperature for incident angles α higher than 60°. The most significant annealing effect is observed for films prepared with α=85° with a strong increase of resistivity from 2.6 x 10-5 to 4.9 x 10-3 Ωm. It is mainly assigned to the oxidation of GLAD vanadium films, which is favoured by the high porous morphology produced for the highest incident angles. The resistivity vs. temperature evolution is also measured and related to the occurrence of the VO2 phase. By combining GLAD and RGPP processes, the reversible variation of resistivity associated to the VO2 phase is even more pronounced. Oxygen pulsing during deposition and the voided structure produced for the highest incident angles enhance the oxidation of vanadiumthrough the films thickness. The porous architecture by GLAD and the oxygen injection by RGPP have to be carefully controlled and optimized for the growth of vanadium oxide compounds, especially to favour the formation of the VO2 phase.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BL - Fyzika plasmatu a výboje v plynech
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1207" target="_blank" >LO1207: Podpora udržitelnosti Inovačního centra diagnostiky a aplikace materiálů na ČVUT-FS v Praze</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surface and Coatings Technology
ISSN
0257-8972
e-ISSN
—
Svazek periodika
304
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
476-485
Kód UT WoS článku
000384775900053
EID výsledku v databázi Scopus
2-s2.0-84978859545